逻辑代数的规律规则(公式集)


逻辑代数是进行逻辑运算的数学方法和工具,跟普通代数一样遵循一定的运算规则。掌握逻辑代数的规律规则是进行逻辑电路的化简、变换、分析和设计的基础。

1.基本运算律

⑴常量与变量的关系

①0-1律:
A ⋅ 0 = 0 ;    A + 0 = A A\cdot 0=0;~~ \textcolor{#FF0000}{A+0=A} A0=0;  A+0=A

A ⋅ 1 = A ;    A + 1 = 1 A\cdot 1=A; ~~A+1=1 A1=A;  A+1=1
②重叠律:
A + A = A ;    A ⋅ A = A A+A=A; ~~A\cdot A=A A+A=A;  AA=A
③互补律:
A + A ˉ = 1 ;    A ⋅ A ˉ = 0 \textcolor{#FF0000}{A+\bar{A}=1}; ~~A\cdot \bar{A}=0 A+Aˉ=1;  AAˉ=0
④还原律:
A ‾ ‾ = A \overline{\overline{A}}=A A=A

⑵交换律和结合律

同普通代数(略)

⑶分配律

A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC

A + B C = ( A + B ) ( A + C ) \textcolor{#FF0000}{A+BC=(A+B)(A+C)} A+BC=(A+B)(A+C)

2.其他常用公式

⑴吸收律

A + A ‾ B = A + B \textcolor{#FF0000}{A+\overline{A}B=A+B} A+AB=A+B

⑵摩根定律(反演律)

摩根定律(也称摩根定理)由英国数学家德·摩根(1806~1871)提出(布尔是摩根的坚定支持者),涉及两个逻辑等式
( A + B ) ‾ = A ‾ ⋅ B ‾ \textcolor{#FF0000}{\overline{(A+B)}=\overline{A}\cdot \overline{B}} (A+B)=AB

A B ‾ = A ‾ + B ‾ \textcolor{#FF0000}{\overline{AB}=\overline{A}+\overline{B}} AB=A+B
多变量扩展:
A + B + C + ⋯ ‾ = A ‾ ⋅ B ‾ ⋅ C ‾ ⋯ \overline{A+B+C+\cdots }=\overline{A}\cdot \overline{B}\cdot \overline{C}\cdots A+B+C+=ABC

A B C ⋯ ‾ = A ‾ + B ‾ + C ‾ + ⋯ \overline{ABC\cdots }=\overline{A}+\overline{B}+\overline{C}+\cdots ABC=A+B+C+

以上两式可通过定律的二变量形式自证,例如:

A + B + C ‾ = ( A + B ) + C ‾ = A + B ‾ ⋅ C ‾ = A ‾ ⋅ B ‾ ⋅ C ‾ \overline{A+B+C}=\overline{(A+B)+C}=\overline{A+B}\cdot \overline{C}=\overline{A}\cdot \overline{B}\cdot \overline{C} A+B+C=(A+B)+C=A+BC=ABC

⑶常用恒等式

A B + A ‾ C + B C = A B + A ‾ C \textcolor{#FF0000}{AB+\overline{A}C+BC=AB+\overline{A}C} AB+AC+BC=AB+AC
可扩展为:
A B + A ‾ C + B C D ⋅ ⋯ = A B + A ‾ C AB+\overline{A}C+BCD\cdot \cdots =AB+\overline{A}C AB+AC+BCD=AB+AC

3.三个定理(规则)

⑴代入定理

在任何一个包含变量 A A A的逻辑等式中,若以另外一个逻辑式代入式中所有 A A A的位置,则等式仍然成立

代入定理可用于逻辑等式证明,例如:

对等式 A B ‾ = A ‾ + B ‾ \overline{AB}=\overline{A}+\overline{B} AB=A+B,以 B C BC BC代替 B B B,可得
A ⋅ B C ‾ = A ‾ + B C ‾ = A ‾ + B ‾ + C ‾ \overline{A\cdot \textcolor{#FF0000}{BC}}=\overline{A}+\overline{\textcolor{#FF0000}{BC}}=\overline{A}+\overline{\textcolor{#FF0000}{B}}+\overline{\textcolor{#FF0000}{C}} ABC=A+BC=A+B+C

代入定理更大的意义在于电路设计,它体现了数字电路设计的基本特点和根本优势,一个数字电路(系统)的输出信号品质不会因为电路的复杂而变差

⑵反演定理

对于任一逻辑式 Y Y Y,若将其中所有的“与”、“或”,“0”、“1”,原、反变量互换,那么得到的结果即为 Y ‾ \overline{Y} Y

反演定理用对逻辑式求反,是求解逻辑函数的反函数的重要方法。例如:已知
Y = A B ˉ + C + D ˉ ‾ Y=A\bar{B}+\overline{C+\bar{D}} Y=ABˉ+C+Dˉ
则由反演定理和摩根定律
Y ‾ = ( A ˉ + B ) C ˉ D ‾ = ( A ˉ + B ) ( C + D ˉ ) \overline{Y}=(\bar{A}+B) \textcolor{#FF0000}{\overline{\bar{C}D}}=(\bar{A}+B)(C+\bar{D}) Y=(Aˉ+B)CˉD=(Aˉ+B)(C+Dˉ)

注意:使用反演定理时,多变量上的反号(即所谓长非号)不变,原表达式的运算优先级不变。

⑶对偶定理

逻辑式的对偶式定义为:对任一逻辑式 Y Y Y,将其中的“与”、“或”, “0”、“1”互换,即得到Y的对偶式 Y D Y^D YD。例如: Y = A B + C ‾ + C D Y=A\overline{B+C}+CD Y=AB+C+CD,则
Y D = ( A + B C ‾ ) ( C + D ) Y^D=(A+\overline{BC})(C+D) YD=(A+BC)(C+D)
对偶定理:若两逻辑式相等,则它们的对偶式也相等

对偶定理主要用于逻辑等式证明。例如:已知分配律第一个公式
A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC
则将等式左右两边变换为对偶式,得分配律第二个公式
A + B C = ( A + B ) ( A + C ) A+BC=(A+B)(A+C) A+BC=(A+B)(A+C)

4.逻辑函数不同形式之间的转换

逻辑函数的表达式有与或式、或与式、与或非式、与非与非式、或非或非式等五种形式,其实际意义在于:电路设计时可根据实际条件或要求选择不同类型集成逻辑门电路。

我们可以将上述五种表达式分为两类,同一类内的逻辑式都可以通过摩根定律快速转换,第一类包括与或式、与非与非式;第二类包括或与式、或非或非式和与或非式

①与或式、与非与非式,形如:
A B + C D = A B ‾ ⋅ C D ‾ ‾ AB+CD=\overline{\overline{AB}\cdot \overline{CD}} AB+CD=ABCD

②或与式、或非或非式、与或非式,形如:
( A + B ) ( C + D ) = A + B ‾ + C + D ‾ ‾ = A ˉ ⋅ B ˉ + C ˉ ⋅ D ˉ ‾ (A+B)(C+D)=\overline{\overline{A+B}+\overline{C+D}}=\overline{\bar{A}\cdot \bar{B}+\bar{C}\cdot \bar{D}} (A+B)(C+D)=A+B+C+D=AˉBˉ+CˉDˉ

那么,两类之间如何转换呢

我们将与或式和或与式作为两类的代表,来分析二者之间的转换。显然,从或与式到与或式,只需要直接按普通分配律展开即可。从与或式到或与式,从逻辑代数的角度,至少可以有两种方法(还可以通过真值表、卡诺图等方法转换):

方法一:(对不太复杂的逻辑函数)直接利用分配律第二个公式,即
Y = A + B C = ( A + B ) ( A + C ) Y=A+BC=(A+B)(A+C) Y=A+BC=(A+B)(A+C)

方法二:先求与或表达式的反函数(表示成与或式),然后再求反,继续以上式为例:

Y ‾ = A + B C ‾ = A ˉ ⋅ B ˉ + A ˉ ⋅ C ˉ \overline{Y}=\overline{A+BC}=\textcolor{blue}{\bar{A}\cdot \bar{B}+\bar{A}\cdot \bar{C}} Y=A+BC=AˉBˉ+AˉCˉ

∴ Y = A ˉ ⋅ B ˉ + A ˉ ⋅ C ˉ ‾ = ( A + B ) ( A + C ) \therefore Y=\overline{\bar{A}\cdot \bar{B}+\bar{A}\cdot \bar{C}}=(A+B)(A+C) Y=AˉBˉ+AˉCˉ=(A+B)(A+C)

基础题★★

题1 Y = A C + B C ‾ Y=AC+B\overline{C} Y=AC+BC用与或非式表示。

解析:
Y ‾ = A C + B C ‾ ‾ = ( A ‾ + C ‾ ) ( B ‾ + C ) = A ‾ ⋅ B ‾ + A ‾ C + B ‾ ⋅ C ‾ = A ‾ C + B ‾ ⋅ C ‾ \overline{Y}=\overline{AC+B\overline{C}}=\left( \overline{A}+\overline{C} \right) \left( \overline{B}+C \right) =\overline{A}\cdot \overline{B}+\overline{A}C+\overline{B}\cdot \overline{C}=\overline{A}C+\overline{B}\cdot \overline{C} Y=AC+BC=(A+C)(B+C)=AB+AC+BC=AC+BC

∴ Y = A ‾ C + B ‾ ⋅ C ‾ ‾ \therefore Y=\overline{\overline{A}C+\overline{B}\cdot \overline{C}} Y=AC+BC

题2 已知函数 F = A B ‾ + B ‾ C + C ‾ ( A ‾ + D ) F=A\overline{B}+\overline{B}C+\overline{C}(\overline{A}+D) F=AB+BC+C(A+D),求反函数。

解析:运用反演定理和分配律
F ‾ = ( A ‾ + B ) ( B + C ‾ ) ( C + A D ‾ ) = ( B + A ‾ ⋅ C ‾ ) ( C + A D ‾ ) = B C + A B D ‾ \overline{F}=(\overline{A}+B)(B+\overline{C})(C+A\overline{D})=(B+\overline{A}\cdot \overline{C})(C+A\overline{D})=BC+AB\overline{D} F=(A+B)(B+C)(C+AD)=(B+AC)(C+AD)=BC+ABD
更多文集,欢迎关注下方公众号!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值