文章目录
逻辑代数是进行逻辑运算的数学方法和工具,跟普通代数一样遵循一定的运算规则。掌握逻辑代数的规律规则是进行逻辑电路的化简、变换、分析和设计的基础。
1.基本运算律
⑴常量与变量的关系
①0-1律:
A
⋅
0
=
0
;
A
+
0
=
A
A\cdot 0=0;~~ \textcolor{#FF0000}{A+0=A}
A⋅0=0; A+0=A
A
⋅
1
=
A
;
A
+
1
=
1
A\cdot 1=A; ~~A+1=1
A⋅1=A; A+1=1
②重叠律:
A
+
A
=
A
;
A
⋅
A
=
A
A+A=A; ~~A\cdot A=A
A+A=A; A⋅A=A
③互补律:
A
+
A
ˉ
=
1
;
A
⋅
A
ˉ
=
0
\textcolor{#FF0000}{A+\bar{A}=1}; ~~A\cdot \bar{A}=0
A+Aˉ=1; A⋅Aˉ=0
④还原律:
A
‾
‾
=
A
\overline{\overline{A}}=A
A=A
⑵交换律和结合律
同普通代数(略)。
⑶分配律
A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC
A + B C = ( A + B ) ( A + C ) \textcolor{#FF0000}{A+BC=(A+B)(A+C)} A+BC=(A+B)(A+C)
2.其他常用公式
⑴吸收律
A + A ‾ B = A + B \textcolor{#FF0000}{A+\overline{A}B=A+B} A+AB=A+B
⑵摩根定律(反演律)
摩根定律(也称摩根定理)由英国数学家德·摩根(1806~1871)提出(布尔是摩根的坚定支持者),涉及两个逻辑等式
(
A
+
B
)
‾
=
A
‾
⋅
B
‾
\textcolor{#FF0000}{\overline{(A+B)}=\overline{A}\cdot \overline{B}}
(A+B)=A⋅B
A
B
‾
=
A
‾
+
B
‾
\textcolor{#FF0000}{\overline{AB}=\overline{A}+\overline{B}}
AB=A+B
多变量扩展:
A
+
B
+
C
+
⋯
‾
=
A
‾
⋅
B
‾
⋅
C
‾
⋯
\overline{A+B+C+\cdots }=\overline{A}\cdot \overline{B}\cdot \overline{C}\cdots
A+B+C+⋯=A⋅B⋅C⋯
A B C ⋯ ‾ = A ‾ + B ‾ + C ‾ + ⋯ \overline{ABC\cdots }=\overline{A}+\overline{B}+\overline{C}+\cdots ABC⋯=A+B+C+⋯
以上两式可通过定律的二变量形式自证,例如:
A + B + C ‾ = ( A + B ) + C ‾ = A + B ‾ ⋅ C ‾ = A ‾ ⋅ B ‾ ⋅ C ‾ \overline{A+B+C}=\overline{(A+B)+C}=\overline{A+B}\cdot \overline{C}=\overline{A}\cdot \overline{B}\cdot \overline{C} A+B+C=(A+B)+C=A+B⋅C=A⋅B⋅C
⑶常用恒等式
A
B
+
A
‾
C
+
B
C
=
A
B
+
A
‾
C
\textcolor{#FF0000}{AB+\overline{A}C+BC=AB+\overline{A}C}
AB+AC+BC=AB+AC
可扩展为:
A
B
+
A
‾
C
+
B
C
D
⋅
⋯
=
A
B
+
A
‾
C
AB+\overline{A}C+BCD\cdot \cdots =AB+\overline{A}C
AB+AC+BCD⋅⋯=AB+AC
3.三个定理(规则)
⑴代入定理
在任何一个包含变量 A A A的逻辑等式中,若以另外一个逻辑式代入式中所有 A A A的位置,则等式仍然成立。
代入定理可用于逻辑等式证明,例如:
对等式
A
B
‾
=
A
‾
+
B
‾
\overline{AB}=\overline{A}+\overline{B}
AB=A+B,以
B
C
BC
BC代替
B
B
B,可得
A
⋅
B
C
‾
=
A
‾
+
B
C
‾
=
A
‾
+
B
‾
+
C
‾
\overline{A\cdot \textcolor{#FF0000}{BC}}=\overline{A}+\overline{\textcolor{#FF0000}{BC}}=\overline{A}+\overline{\textcolor{#FF0000}{B}}+\overline{\textcolor{#FF0000}{C}}
A⋅BC=A+BC=A+B+C
代入定理更大的意义在于电路设计,它体现了数字电路设计的基本特点和根本优势,一个数字电路(系统)的输出信号品质不会因为电路的复杂而变差。
⑵反演定理
对于任一逻辑式 Y Y Y,若将其中所有的“与”、“或”,“0”、“1”,原、反变量互换,那么得到的结果即为 Y ‾ \overline{Y} Y。
反演定理用对逻辑式求反,是求解逻辑函数的反函数的重要方法。例如:已知
Y
=
A
B
ˉ
+
C
+
D
ˉ
‾
Y=A\bar{B}+\overline{C+\bar{D}}
Y=ABˉ+C+Dˉ
则由反演定理和摩根定律
Y
‾
=
(
A
ˉ
+
B
)
C
ˉ
D
‾
=
(
A
ˉ
+
B
)
(
C
+
D
ˉ
)
\overline{Y}=(\bar{A}+B) \textcolor{#FF0000}{\overline{\bar{C}D}}=(\bar{A}+B)(C+\bar{D})
Y=(Aˉ+B)CˉD=(Aˉ+B)(C+Dˉ)
注意:使用反演定理时,多变量上的反号(即所谓长非号)不变,原表达式的运算优先级不变。
⑶对偶定理
逻辑式的对偶式定义为:对任一逻辑式
Y
Y
Y,将其中的“与”、“或”, “0”、“1”互换,即得到Y的对偶式
Y
D
Y^D
YD。例如:
Y
=
A
B
+
C
‾
+
C
D
Y=A\overline{B+C}+CD
Y=AB+C+CD,则
Y
D
=
(
A
+
B
C
‾
)
(
C
+
D
)
Y^D=(A+\overline{BC})(C+D)
YD=(A+BC)(C+D)
对偶定理:若两逻辑式相等,则它们的对偶式也相等。
对偶定理主要用于逻辑等式证明。例如:已知分配律第一个公式
A
(
B
+
C
)
=
A
B
+
A
C
A(B+C)=AB+AC
A(B+C)=AB+AC
则将等式左右两边变换为对偶式,得分配律第二个公式
A
+
B
C
=
(
A
+
B
)
(
A
+
C
)
A+BC=(A+B)(A+C)
A+BC=(A+B)(A+C)
4.逻辑函数不同形式之间的转换
逻辑函数的表达式有与或式、或与式、与或非式、与非与非式、或非或非式等五种形式,其实际意义在于:电路设计时可根据实际条件或要求选择不同类型集成逻辑门电路。
我们可以将上述五种表达式分为两类,同一类内的逻辑式都可以通过摩根定律快速转换,第一类包括与或式、与非与非式;第二类包括或与式、或非或非式和与或非式。
①与或式、与非与非式,形如:
A
B
+
C
D
=
A
B
‾
⋅
C
D
‾
‾
AB+CD=\overline{\overline{AB}\cdot \overline{CD}}
AB+CD=AB⋅CD
②或与式、或非或非式、与或非式,形如:
(
A
+
B
)
(
C
+
D
)
=
A
+
B
‾
+
C
+
D
‾
‾
=
A
ˉ
⋅
B
ˉ
+
C
ˉ
⋅
D
ˉ
‾
(A+B)(C+D)=\overline{\overline{A+B}+\overline{C+D}}=\overline{\bar{A}\cdot \bar{B}+\bar{C}\cdot \bar{D}}
(A+B)(C+D)=A+B+C+D=Aˉ⋅Bˉ+Cˉ⋅Dˉ
那么,两类之间如何转换呢?
我们将与或式和或与式作为两类的代表,来分析二者之间的转换。显然,从或与式到与或式,只需要直接按普通分配律展开即可。从与或式到或与式,从逻辑代数的角度,至少可以有两种方法(还可以通过真值表、卡诺图等方法转换):
方法一:(对不太复杂的逻辑函数)直接利用分配律第二个公式,即
Y
=
A
+
B
C
=
(
A
+
B
)
(
A
+
C
)
Y=A+BC=(A+B)(A+C)
Y=A+BC=(A+B)(A+C)
方法二:先求与或表达式的反函数(表示成与或式),然后再求反,继续以上式为例:
Y ‾ = A + B C ‾ = A ˉ ⋅ B ˉ + A ˉ ⋅ C ˉ \overline{Y}=\overline{A+BC}=\textcolor{blue}{\bar{A}\cdot \bar{B}+\bar{A}\cdot \bar{C}} Y=A+BC=Aˉ⋅Bˉ+Aˉ⋅Cˉ
∴ Y = A ˉ ⋅ B ˉ + A ˉ ⋅ C ˉ ‾ = ( A + B ) ( A + C ) \therefore Y=\overline{\bar{A}\cdot \bar{B}+\bar{A}\cdot \bar{C}}=(A+B)(A+C) ∴Y=Aˉ⋅Bˉ+Aˉ⋅Cˉ=(A+B)(A+C)
基础题★★
题1 将 Y = A C + B C ‾ Y=AC+B\overline{C} Y=AC+BC用与或非式表示。
解析:
Y
‾
=
A
C
+
B
C
‾
‾
=
(
A
‾
+
C
‾
)
(
B
‾
+
C
)
=
A
‾
⋅
B
‾
+
A
‾
C
+
B
‾
⋅
C
‾
=
A
‾
C
+
B
‾
⋅
C
‾
\overline{Y}=\overline{AC+B\overline{C}}=\left( \overline{A}+\overline{C} \right) \left( \overline{B}+C \right) =\overline{A}\cdot \overline{B}+\overline{A}C+\overline{B}\cdot \overline{C}=\overline{A}C+\overline{B}\cdot \overline{C}
Y=AC+BC=(A+C)(B+C)=A⋅B+AC+B⋅C=AC+B⋅C
∴ Y = A ‾ C + B ‾ ⋅ C ‾ ‾ \therefore Y=\overline{\overline{A}C+\overline{B}\cdot \overline{C}} ∴Y=AC+B⋅C
题2 已知函数 F = A B ‾ + B ‾ C + C ‾ ( A ‾ + D ) F=A\overline{B}+\overline{B}C+\overline{C}(\overline{A}+D) F=AB+BC+C(A+D),求反函数。
解析:运用反演定理和分配律
F
‾
=
(
A
‾
+
B
)
(
B
+
C
‾
)
(
C
+
A
D
‾
)
=
(
B
+
A
‾
⋅
C
‾
)
(
C
+
A
D
‾
)
=
B
C
+
A
B
D
‾
\overline{F}=(\overline{A}+B)(B+\overline{C})(C+A\overline{D})=(B+\overline{A}\cdot \overline{C})(C+A\overline{D})=BC+AB\overline{D}
F=(A+B)(B+C)(C+AD)=(B+A⋅C)(C+AD)=BC+ABD
更多文集,欢迎关注下方公众号!