洛谷 图的遍历 反向建边+邻接表存储

题目描述

给出 N 个点,M 条边的有向图,对于每个点 v,令 A(v) 表示从点 v 出发,能到达的编号最大的点。现在请求出 A(1),A(2),…,A(N) 的值。

输入格式

第 1 行 2 个整数 N,M,表示点数和边数。

接下来 M 行,每行 2 个整数 Ui​,Vi​,表示边 (Ui​,Vi​)。点用 1,2,…,N 编号。

输出格式

一行 N 个整数 A(1),A(2),…,A(N)。

m,n值大于1E4,使用邻接表存储图。

代码:

#include <bits/stdc++.h>
#define MX 100005
using namespace std;

int n,m;
int visited[MX] = {0};
//点的个数超过1e4,使用邻接表存储图 
struct edge{
    int u,v;//u起点,v终点 
};
vector<edge> g;
vector<int> e[MX];//二维存储图 
bool cmp(edge p,edge q)
{
    if(p.u == q.u)return p.v < q.v;
    return p.u < q.u;
}
int mx[MX] = {0};
//深度优先搜索,d用于记录最大值 
void dfs(int k,int d){
    if(visited[k]) return;
    visited[k] = d;
    for(int i = 0;i < e[k].size();i++){
        dfs(e[k][i],d);
    }

int main() {
    cin>>n>>m;
    for(int i = 1;i <= m;i++)
    {
        int x,y;
        cin>>x>>y;
        g.push_back((edge){y,x});//反向建边 
    } 
    sort(g.begin(),g.end(),cmp);
    for(int i = 0;i < g.size();i++)
    {
        e[g[i].u].push_back(g[i].v);
    }
    for(int i = n;i >= 1;i--){
        dfs(i,i);
    }
    for(int i = 1;i <= n;i++)
    {
        cout<<visited[i]<<" ";
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值