程序员面试题精选--(04)查找最小的k个元素

题目:输入n个整数,输出其中最小的k个。

例如输入123456788个数字,则最小的4个数字为1234

 

分析:这道题最简单的思路莫过于把输入的n个整数排序,这样排在最前面的k个数就是最小的k个数。只是这种思路的时间复杂度为O(nlogn)。我们试着寻找更快的解决思路。

 

我们可以开辟一个长度为k的数组。每次从输入的n个整数中读入一个数。如果数组中已经插入的元素少于k个,则将读入的整数直接放到数组中。否则长度为k的数组已经满了,不能再往数组里插入元素,只能替换了。如果读入的这个整数比数组中已有k个整数的最大值要小,则用读入的这个整数替换这个最大值;如果读入的整数比数组中已有k个整数的最大值还要大,则读入的这个整数不可能是最小的k个整数之一,抛弃这个整数。这种思路相当于只要排序k个整数,因此时间复杂可以降到O(n+nlogk)通常情况下k要远小于n,所以这种办法要优于前面的思路。

从给面试官留下更好印象的角度出发,我们可以进一步把代码写得更漂亮一些。从上面的分析,当长度为k的数组已经满了之后,如果需要替换,每次替换的都是数组中的最大值。在常用的数据结构中,能够在O(1)时间里得到最大值的数据结构为最大堆。因此我们可以用堆(heap)来代替数组。

 

这个地方大家可以好好想想,为什么要用到大顶堆,为什么不是小顶堆?

由于我们这里是要找最小的K个数,在堆中元素还小于K的时候,我们每读入一个数据,都是进入插入到堆中的,当堆中已经有了K个元素后,我们读到K+1个元素,此时就分两种情况:

  1. 由于我们要找k个最小的数,所以淘汰的应该是这K+1个数中最大的一个,既然是最大的,自然是用大顶堆了
  2. 如果当前读入的第k+1个数比堆中的最大值还要大,则直接将其它淘汰,如果小,则要淘汰堆中的最大值

这里自然想到,如果是求最大的k个数,我们就要用到小顶堆了。

 

另外,自己重头开始写一个最大堆需要一定量的代码。我们现在不需要重新去发明车轮,因为前人早就发明出来了。同样,STL中的setmultiset为我们做了很好的堆的实现,我们可以拿过来用。可以给面试官留下熟悉STL的好印象!

 

下面贴出测试代码:

 

这里注意大顶堆的形式:

typedef multiset < int, greater < int > > IniHeap;

 

注意几点:

  1. 小顶堆是multiset < int, less < int > >
  2. 它的插入操作是不带迭代器的,即insert(x)
  3. 从begin() 到 end(),堆中数据按大到小排列。
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页