编译原理--正则文法与正则表达式

  • 对任何正则文法G,存在定义同一语言的正则表达式r
  • 对任何正则表达式r,存在生成同一语言的正则文法G

正则文法到正则表达式的转换

  1. 将正则文法中的每个非终结符表示成关于它的一个正则表达式方程,获得一个联立方程组
  2. 依照求解规则:
    • x=αxβx=\alpha x | \beta(若x=αx+βx=\alpha x + \beta),则解为:x=αβx=\alpha^*\beta
    • x=xαβx=x\alpha | \beta(若x=xα+βx=x\alpha + \beta),则解为x=βxx=\beta x^*

以及正则表达式的代数定理,求文法开始符号的正规式方程组的解。这个解释关于该文法开始符号S的一个正规式。

例:

设有正则文法G:
Z0A Z \to 0A

A0A0B A \to 0A | 0B

B1Aϵ B\to 1A|\epsilon

试给出该文法生成语言的正则表达式

  • 首先给出相应正则表达式方程组(即用+代替正则表达式|

Z0A Z \to 0A
2.
A0A+0B A \to 0A + 0B
3.
B1A+ϵ B\to 1A+\epsilon

将3式代入2式中得,
4.
A=0A+01A+0 A = 0A + 01A + 0
对4式利用分配率:
5.
A=(0+01)A+0 A = (0+01)A + 0

对5式使用求解规则
6.
A=(0+01)0 A=(0+01)^*0

将式6代入式1中的A得:
Z=0(0+01)0 Z=0(0+01)^*0

正则表达式到正则文法的转换

字母表\sum上的正则表达式到正则文法G=(VN,VT,P,S)G=(V_N, V_T,P,S)的转换方法如下:

  • VT=V_T=\sum
  • 对任意正则表达式R选择一个非终结符Z生成规则ZRZ \to R,并令S=ZS=Z
  • aabb都是正则表达式,对形如AabA\to ab的规则转换成AaBA \to aBBbB\to b两规则,其中B是新增的非终结符
  • 在已转换的文法中,将形如AabA \to a^*b的规则进一步转换成AaAbA \to aA | b
  • 不断利用第三和第四条规则进行变换,直到每条规则最多含有一个终结符

例如:

R=(ab)(aa)(ab)R=(a|b)(aa)^*(a|b)转换成相应的正则文法

AA是文法开始符号,根据第二条规则可变换为:
A(ab)(aa)(ab) A \to (a|b)(aa)^*(a|b)

根据第三条规则变换为:

A(ab)B A \to (a|b)B

B(aa)(ab) B \to (aa)^*(a|b)

根据第四条规则变换为:
AaBbB A \to aB|bB

BaaBab B \to aaB|a|b

根据第五条规则变换为:
AaBbB A \to aB|bB

BaCab B \to aC|a|b

CaB C\to aB

展开阅读全文

没有更多推荐了,返回首页