编译原理学习之:正则表达式(regular expression)和非正则语言(non-regular languages)

回顾子集构造(NFA → \rightarrow DFA)

在这里插入图片描述

正则语言的闭包结果

正则语言的 Union 依然是正则语言

  • A , B A,B A,B 是两个正则语言,他们通过 ϵ \epsilon ϵ 组成了一个 NFA ,他可以表示为 A ∪ B A\cup B AB;我们要在状态开始的时候使用 ϵ \epsilon ϵ 来连接两个 DFA
    在这里插入图片描述

正则语言的 concatenate ○ ○ 操作依然是正则的

在这里插入图片描述

  • 图中下半部分表示第一个语言的某两种状态通过 ϵ \epsilon ϵ 进行 concate 组成了第二种语言的某种状态;这样组成的新语言依然是正则语言

正则语言的 k l e e n e   s t a r kleene~ star kleene star 依然是正则语言

在这里插入图片描述

正则语言的其他闭包性质

  • 两个正则语言的 intersection(交集)依然是正则语言
  • 正则语言的补集(complement)依然是正则语言 A , A C A, A^C A,AC
  • 正则语言的差集(difference)依然是正则语言 A ∖ B A \setminus B AB
  • 正则语言的取反(reversal)依然是正则语言

如何构造 DFA 的运算算法(构造 DFA 的交、并、补集)

在这里插入图片描述
在这里插入图片描述

如何构造最小的 DFA(指包括最少状态数的 DFA)

  • 因为我们无法保证通过某种算法可以得到最小的 DFA,如下图所示,我们不知道他是否为最简 DFA
  • 但是由于 DFA 拥有唯一的起始状态,并且转移函数是固定的,因此我们可以测试两个 DFA 的等价性从而找出最小的 DFA
    在这里插入图片描述
  • 要构造最小的 DFA 要不断重复以下步骤
    • 翻转 NFA
    • 确定化结果
    • 再翻转
    • 再次确定化结果
  • 翻转 NFA 的方式也很简单:
    1. 那就是将所有的状态上的线调转方向
    2. 将接受(accept)状态节点和初始节点(start)互换
      在这里插入图片描述

构造最小化 DFA 举例

  • 这是我们要最小化的 NFA, 我们在下面的步骤中通过它得到一个最小的 DFA
    在这里插入图片描述

  • 第一步: 翻转(1节点和 2 节点的功能互换,原本 1 是初始节点,2是accept 节点,现在调转一下 1 变成了 accept 节点,2 变成了初始节点)
    在这里插入图片描述

  • 第二步: 通过调转的 NFA 进行确定化得到当前状态下的 determinism 的结果
    在这里插入图片描述

  • 因为最终状态中 5 , 6 5,6 5,6 包含原来的 1 1 1 状态(即 accept 状态),因此, 5 , 6 5,6 5,6 应该被标定为出口

  • 第三步 再次调转已经得到的 NFA ; 5 , 6 5,6 5,6 变成了起始状态; 4 4 4 变成了 accept 状态
    在这里插入图片描述

  • 第四步: 重复第二步的 determinism 得到最后的状态
    在这里插入图片描述
    在这里插入图片描述

正则表达式

  • 各种编程语言中几乎都涉及正则表达式
  • ( 0 ∪ 1 ) ( 0 ∪ 1 ) ( 0 ∪ 1 ) ( ( 0 ∪ 1 ) ( 0 ∪ 1 ) ( 0 ∪ 1 ) ) ∗ (0 ∪ 1)(0 ∪ 1)(0 ∪ 1)((0 ∪ 1)(0 ∪ 1)(0 ∪ 1))^∗ (01)(01)(01)((01)(01)(01)) 代表一个长度为 3 的倍数的非空字符串
  • ∗ * 运算的优先级高于 concatenate;concatenate 高于 union

正则表达式语法和语义

在这里插入图片描述
在这里插入图片描述

正则表达式举例

在这里插入图片描述

正则表达式和自动机(Regular Expression VS. Automata)

构造单个起始状态的 NFA

  • 正则表达式和有限状态的自动机是等价的,而且有限状态机的起始状态只能有一个
  • 在下面的例子中,我们假设每个 NFA 的起始状态只有一个,那么对于一个多起始状态的 NFA N N N 我们可以表示成若干个 N ′ N^{'} N 的通过 ϵ \epsilon ϵ 的并联
    在这里插入图片描述
  • 这个式子 δ ′ ( q , v ) \delta^{'}(q,v) δ(q,v) 中, q i q_i qi 代表的就是原本的 多个起始状态 q q q 统一用 q i q_i qi + ϵ \epsilon ϵ 代替;而其他不是起始状态开始的节点则遵循原本的 δ \delta δ 转换状态。
    在这里插入图片描述
正则语言 → \rightarrow NFA 举例(单个起始状态): ( a ∪ b ) ∗ b c (a ∪ b)^∗bc (ab)bc
  • 国外的书籍和课件 是按照这种方式进行构造和转换的
    在这里插入图片描述

构造单个 accept 状态的 NFA

  • 可以看到下图的 N N N 中有 3 个终止状态
  • 汇总起始状态和将初始状态分开都同样使用 ϵ \epsilon ϵ
  • 例如下图的例子:
    在这里插入图片描述
  • 图中的 δ ′ ( q , v ) \delta^{'}(q,v) δ(q,v) 代表的就是将状态转换函数分成了两类:
    • 如果是原来 accept 状态,那么就添加一个新的状态 q f q_f qf 并且把原来所有的 accept 状态都通过 ϵ \epsilon ϵ 连接过去
    • 原来的其他状态则不需要进行调整,维持原本的样子
  • 所以我们看到下图中的三个原本的 accept 状态都通过 ϵ \epsilon ϵ 连到了新的 “唯一的 accpet” 状态 q f q_f qf
    在这里插入图片描述

(兴趣读物:国内课本的方法)通过正则语言构造 NFA

  • 当我们获得一个正则语言,我们如果要构造 NFA(单起始状态的),我们只需要不断重复下面 三个步骤 即可:(国内书籍版本)
    • 将 concatenate 操作分成两个串联的部分
    • 将 union (|)操作分成两个并联的部分
    • 将闭包运算 * 分成第三种情况
      在这里插入图片描述
正则语言 → \rightarrow NFA 举例

在这里插入图片描述

化简 “单个” 起始和 accept 状态的 NFA

  • 上文已经分别介绍了如何构造单个起始状态的 NFA 和 单个 accept 状态的 NFA
  • 现在对于中间的状态进行重复地替换(使用正则表达式)以简化 NFA;方法就是把线上的 字符 用正则表达式来替换;并不断重复这个过程
  • 如下图所示,我们的 NFA 现在已经是 单个起始状态和单个 accpet 状态;弧线上表示的 R 1 , R 2 , . . . R_1,R_2,... R1,R2,... 都是 正则表达式,假设我们通过化简可以得到下面的两个 NFA 的表示 :
    • ( R 1 ∪ R 2 R 3 ∗ R 4 ) ∗ R 2 R 3 ∗ (R_1 ∪ R_2R_3^∗R_4)^∗R_2R_3^∗ (R1R2R3R4)R2R3
    • R ∗ R^* R
      在这里插入图片描述
      通过下面例子来进行演示:假设化简的是下面的例子
      在这里插入图片描述
  • 首先先把上面的两个 accept 状态的图转换成一个 accept 状态,根据上面的知识
    在这里插入图片描述
  • 通过正则表达式来替换线上的字符从而实现状态的化简:
    在这里插入图片描述
  • 再次通过正则表达式来合并中间的步骤
    在这里插入图片描述
  • 最终把中间状态逐渐换成正则表达式;得到了最简的 NFA
    在这里插入图片描述
  • 而上述的式子就相当于我们最开始引入的 ( R 1 ∪ R 2 R 3 ∗ R 4 ) ∗ R 2 R 3 ∗ (R_1 ∪ R_2R_3^∗R_4)^∗R_2R_3^∗ (R1R2R3R4)R2R3
    在这里插入图片描述
  • 因此我们容易得到以下替换:
    在这里插入图片描述
扩展
  • 下图中表示的:一个进,一个出,一个循环的这种状态可以被固定的写成 R 1 R 2 ∗ R 3 R_1R_2^∗R_3 R1R2R3

在这里插入图片描述

  • 如果有 m m m 个进入的弧线, n n n 个出去的弧线,那么这些弧线可以被 m × n m×n m×n 个循环弧线所代替。
    在这里插入图片描述

正则表达式的定理

在这里插入图片描述
在这里插入图片描述

正则语言的局限性

{ 0 n 1 n ∣ n ≥ 0 } = { ϵ , 01 , 0011 , 000111 , . . . } \{0^n1^n | n ≥ 0\} = \{\epsilon, 01, 0011, 000111, . . .\} {0n1nn0}={ϵ,01,0011,000111,...}

  • 对于上面的语言我们无法使用 DFA 来识别,即:他不是一个正则语言。

通过泵引理(Pumping Lemma)来验证正则语言

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • pumping lemma 只能证明一个语言不是正则语言,不能证明一个语言是正则语言;即:满足 pumping lemma 不一定是正则语言,但是不满足 pumping lemma 一定不是正则语言

泵引理反证法实例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 4
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暖仔会飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值