基础知识(十一)Eigen求解稀疏矩阵

Eigen这个库,早在研究生阶段的时候,就用到烂了,因为三维的图形算法经常要涉及到求解稀疏矩阵。然而工作一年都没碰到Eigen,突然今天要用到求解稀疏矩阵最小二乘方程组,变得有点陌生了,惭愧,因此简单记录一下,以便日后重新复制粘贴修改使用。

#include "Eigen/Sparse"
typedef Eigen::SparseMatrix<double> SparseMatrixType;

#include <vector>
using namespace std;
vec CDepthRegression::Get_LightDirection()
{
	vec light;
	int fn = m_mesh->faces.size();

	typedef Eigen::Triplet<double> T;
	std::vector<T> tripletList;//稀疏矩阵的元素
	for (int i = 0; i < fn;i++)
	{
		
		const TriMesh::Face &f = m_mesh->faces[i];
		vec v0 = m_mesh->vertices[f[0]];
		vec v1 = m_mesh->vertices[f[1]];
		vec v2 = m_mesh->vertices[f[2]];

		vec facenormal = (v2 - v1) CROSS(v0 - v2);
		facenormal = normalize(facenormal);
		for (int j = 0; j < 3;j++)
		{
			tripletList.push_back(T(i,j, facenormal[j]));
		}
		
	}
	SparseMatrixType Ls(fn, 3);//矩阵的宽高
	Ls.setFromTriplets(tripletList.begin(), tripletList.end());//从Triplet中构建稀疏矩阵

	//最小二乘解超静定方程组
	SparseMatrixType ls_transpose = Ls.transpose();
	SparseMatrixType LsLs = ls_transpose* Ls;
	Eigen::VectorXd RHSPos;//超静定方程组右边
	RHSPos.resize(fn);
	RHSPos.setZero();
	for (int i = 0; i < fn;i++)
	{
		float I = m_mesh->face_color[i];
		RHSPos[i] = I;
	}

	Eigen::SimplicialCholesky<SparseMatrixType>MatricesCholesky(LsLs);


	Eigen::VectorXd xyzRHS = ls_transpose*RHSPos;
	Eigen::Vector3d xyz = MatricesCholesky.solve(xyzRHS);


	return vec(xyz[0],xyz[1], xyz[2]);

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值