利用Mathpix和Typora编辑markov链的证明过程

Markov链的证明过程:

什么是markov链:

马尔可夫链(Markov Chain, MC)是概率论和数理统计中具有马尔可夫性质(Markov property)且存在于离散的指数集(index set)和状态空间(state space)内的随机过程(stochastic process)[1][2]。适用于连续指数集的马尔可夫链被称为马尔可夫过程(Markov process),但有时也被视为马尔可夫链的子集,即连续时间马尔可夫链(Continuous-Time MC, CTMC),与离散时间马尔可夫链(Discrete-Time MC, DTMC)相对应,因此马尔可夫链是一个较为宽泛的概念[2]

设两个信道串接构成随机变量序列(XYZ),则:
I ( X Y ; Z ) ⩾ I ( Y ; Z ) I(XY;Z)\geqslant I(Y;Z) I(XY;Z)I(Y;Z)

当且仅当:
P ( Z / X Y ) = P ( Z / Y ) P(Z/XY)=P(Z/Y) P(Z/XY)=P(Z/Y)
即(XYZ)是Markov链时,才有:
I ( X Y ; Z ) = I ( Y ; Z ) I(XY;Z)=I(Y;Z) I(XY;Z)=I(Y;Z)

证明如下:

根据平均交互信息量的定义:
I ( a i ; b j ) = ∑ i = 1 r p ( a i / b j ) I ( a i ; b j ) = ∑ i = 1 r p ( a i / b j ) log ⁡ p ( a i / b j ) p ( a i ) . . . . . . . . ( j = 1 , 2 , . . . , s ) I(a_i;b_j)=\sum\limits_{i=1}^{r}p(a_i/b_j)I(a_i;b_j)\\ =\sum\limits_{i=1}^{r}p(a_i/b_j)\log \frac {p(a_i/b_j)}{p(a_i)}........(j=1,2,...,s)\\ I(ai;bj)=i=1rp(ai/bj)I(ai;bj)=i=1rp(ai/bj)logp(ai)p(ai/bj)........(j=1,2,...,s)

所以:
I ( X Y ; Z ) = ∑ i = 1 r ∑ j = 1 n ∑ k = 1 L p ( a i b j c k ) log ⁡ p ( c k / a i b j ) p ( c k ) I(X Y;Z)=\sum_{i=1}^{r} \sum_{j=1}^{n} \sum_{k=1}^{L} p\left(a_{i} b_{j} c_{k}\right) \log \frac{p\left(c_{k} / a_{i} b_{j}\right)}{p\left(c_{k}\right)} I(XY;Z)=i=1rj=1nk=1Lp(aibjck)logp(ck)p(ck/aibj)
而:
I ( Y ; Z ) = ∑ j = 1 s ∑ i = 1 L p ( b j c k ) log ⁡ p ( c k / b j ) p ( c k ) = ∑ i = 1 r ∑ j = 1 s ∑ k = 1 L p ( a i b j c k ) log ⁡ p ( c k / b j ) p ( c k ) I(Y ; Z)=\sum_{j=1}^{s} \sum_{i=1}^{L} p\left(b_{j} c_{k}\right) \log \frac{p\left(c_{k} / b_{j}\right)}{p\left(c_{k}\right)}=\sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{L} p\left(a_{i} b_{j} c_{k}\right) \log \frac{p\left(c_{k} / b_{j}\right)}{p\left(c_{k}\right)} I(Y;Z)=j=1si=1Lp(bjck)logp(ck)p(ck/bj)=i=1rj=1sk=1Lp(aibjck)logp(ck)p(ck/bj)
考虑到:
∑ j = 1 s ∑ i = 1 L p ( b j c k ) = ∑ i = 1 r ∑ j = 1 s ∑ k = 1 L p ( a i b j c k ) = 1 , \sum_{j=1}^{s} \sum_{i=1}^{L} p\left(b_{j} c_{k}\right) =\sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{L} p\left(a_{i} b_{j} c_{k}\right) =1, j=1si=1Lp(bjck)=i=1rj=1sk=1Lp(aibjck)=1,
以及“底”大于1的对数是倒U型凸函数,由不等式:
f { ∑ i = 1 r p i x i } ⩾ ∑ i = 1 r p i f ( x i ) f\left\{\sum_{i=1}^{r} p_{i} x_{i}\right\} \geqslant \sum_{i=1}^{r} p_{i} f\left(x_{i}\right) f{i=1rpixi}i=1rpif(xi)
可得下式:

I ( Y ; Z ) − I ( X Y ; Z ) = ∑ i = 1 r ∑ j = 1 s ∑ k = 1 L p ( a i , b j c k ) log ⁡ p ( c k / b j ) p ( c k / a i , b j ) . . . . . . . . . 1 ⩽ log ⁡ { ∑ i ∑ j ∑ k p ( a i , b j , c k ) p ( c k / b j ) p ( c k / a i b j ) } . . . . . . . 2 = log ⁡ { ∑ i ∑ j ∑ k p ( a i b j ) p ( c k / b j ) } . . . . . . 3 / / / / / / / / / / / / / / / / / / / / / / / / / / / / = log ⁡ 1 = 0 \begin{aligned} I(Y ; Z)-I(X Y ; Z) &=\sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{L} p\left(a_{i}, b_{j} c_{k}\right) \log \frac{p\left(c_{k} / b_{j}\right)}{p\left(c_{k} / a_{i}, b_{j}\right)}......... 1 \\ & \leqslant \log \left\{\sum_{i} \sum_{j} \sum_{k}p\left(a_{i}, b_{j}, c_{k}\right) \frac{p\left(c_{k} / b_{j}\right)}{p\left(c_{k} / a_{i} b_{j}\right)}\right\} .......2 \\ &=\log \left\{\sum_{i} \sum_{j} \sum_{k} p\left(a_{i} b_{j}\right) p\left(c_{k} / b_{j}\right)\right\}......3\\ =\log 1=0 \end{aligned} I(Y;Z)I(XY;Z)////////////////////////////=log1=0=i=1rj=1sk=1Lp(ai,bjck)logp(ck/ai,bj)p(ck/bj).........1log{ijkp(ai,bj,ck)p(ck/aibj)p(ck/bj)}.......2=log{ijkp(aibj)p(ck/bj)}......3

下面是上式中的一些难懂解释:1式解释、
∑ i = 1 r ∑ j = 1 s ∑ k = 1 L p ( a i , b j c k ) log ⁡ p ( c k / b j ) p ( c k / a i , b j ) = ∑ i = 1 r ∑ j = 1 s ∑ k = 1 L p ( a i b j c k ) log ⁡ p ( c k / b j ) p ( c k ) − ∑ i = 1 r ∑ j = 1 n ∑ k = 1 L p ( a i b j c k ) log ⁡ p ( c k / a i b j ) p ( c k ) \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{L} p\left(a_{i}, b_{j} c_{k}\right) \log \frac{p\left(c_{k} / b_{j}\right)}{p\left(c_{k} / a_{i}, b_{j}\right)}\\=\sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{L} p\left(a_{i} b_{j} c_{k}\right) \log \frac{p\left(c_{k} / b_{j}\right)}{p\left(c_{k}\right)}-\sum_{i=1}^{r} \sum_{j=1}^{n} \sum_{k=1}^{L} p\left(a_{i} b_{j} c_{k}\right) \log \frac{p\left(c_{k} / a_{i} b_{j}\right)}{p\left(c_{k}\right)} i=1rj=1sk=1Lp(ai,bjck)logp(ck/ai,bj)p(ck/bj)=i=1rj=1sk=1Lp(aibjck)logp(ck)p(ck/bj)i=1rj=1nk=1Lp(aibjck)logp(ck)p(ck/aibj)
上式提出公共部分,后面的进行log进行减法

2式到3式得证明过程:
∵       p ( a i , b j , c k ) = p ( a i b j ) p ( c k / a i b j ) ∴        p ( a i , b j , c k ) p ( c k / b j ) p ( c k / a i b j ) = p ( a i b j ) p ( c k / b j ) \because \ \ \ \ \ p\left(a_{i}, b_{j}, c_{k}\right)=p\left(a_{i}b_{j}\right){p\left(c_{k} / a_{i}b_{j}\right)}\\ \therefore\ \ \ \ \ \ p\left(a_{i}, b_{j}, c_{k}\right) \frac{p\left(c_{k} / b_{j}\right)}{p\left(c_{k} / a_{i} b_{j}\right)}=p\left(a_{i} b_{j}\right) p\left(c_{k} / b_{j}\right)      p(ai,bj,ck)=p(aibj)p(ck/aibj)      p(ai,bj,ck)p(ck/aibj)p(ck/bj)=p(aibj)p(ck/bj)

3式可以写成如下:
∑ i ∑ j ∑ k p ( a i b j ) p ( c k / b j ) = ∑ i ∑ j p ( a i b j ) ∑ k p ( c k / b j ) 又 因 为 . . . . . . . ∑ k p ( c k / b j ) . . . . 当 且 仅 当 k = 1 , 2 , . . . . , L 都 有 ∑ k p ( c k / b j ) = ∑ k p ( c k ) 又 因 为 . . . . ∑ i ∑ j p ( a i b j ) = 1 , , , , ∑ k p ( c k ) = 1 所 以 . . . . ∑ i ∑ j ∑ k p ( a i b j ) p ( c k / b j ) = ∑ i ∑ j p ( a i b j ) ∑ k p ( c k / b j ) = 1 \sum_{i} \sum_{j} \sum_{k} p\left(a_{i} b_{j}\right) p\left(c_{k} / b_{j}\right)=\sum_{i} \sum_{j}p\left(a_{i} b_{j}\right)\sum_{k}p\left(c_{k} / b_{j}\right)\\ 又因为.......\sum_{k}p\left(c_{k} / b_{j}\right)....当且仅当k=1,2,....,L都有\sum_{k}p\left(c_{k} / b_{j}\right)=\sum_{k}p\left(c_{k} \right)\\ 又因为....\sum_{i} \sum_{j}p\left(a_{i} b_{j}\right)=1,,,,\sum_{k}p\left(c_{k} \right)=1\\ 所以....\sum_{i} \sum_{j} \sum_{k} p\left(a_{i} b_{j}\right) p\left(c_{k} / b_{j}\right)=\sum_{i} \sum_{j}p\left(a_{i} b_{j}\right)\sum_{k}p\left(c_{k} / b_{j}\right)=1 ijkp(aibj)p(ck/bj)=ijp(aibj)kp(ck/bj).......kp(ck/bj)....k=1,2,....,Lkp(ck/bj)=kp(ck)....ijp(aibj)=1,,,,kp(ck)=1....ijkp(aibj)p(ck/bj)=ijp(aibj)kp(ck/bj)=1

综上所述,上式不等式成立

当且仅当:

p ( c k , b j ) p ( c k / a i b j ) = 1 ( i = 1 , 2 , ⋯   , r ; j = 1 , 2 , ⋯   , s ; k = 1 , 2 , ⋯ L ) \frac{p\left(c_{k}, b_{j}\right)}{p\left(c_{k} / a_{i}b_{j}\right)}=1 \quad\left(i=1,2, \cdots, r ;j=1,2, \cdots, s; k=1,2, \cdots L\right) p(ck/aibj)p(ck,bj)=1(i=1,2,,r;j=1,2,,s;k=1,2,L)

则上式不等式等于:
I ( Y ; Z ) − I ( X Y ; Z ) = ∑ i = 1 r ∑ j = 1 s ∑ k = 1 L p ( a i b j c k ) log ⁡ p ( c k / b j ) p ( c k / a i b j ) = ∑ i = 1 r ∑ j = 1 s ∑ k = 1 L p ( a i b j c k ) log ⁡ 1 = 0 I ( X Y ; Z ) = I ( Y ; Z ) \begin{aligned} I(Y ; Z)-I(X Y ; Z) &=\sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{L} p\left(a_{i} b_{j} c_{k}\right) \log \frac{p\left(c_{k} / b_{j}\right)}{p\left(c_{k} / a_{i} b_{j}\right)} \\ &=\sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{L} p\left(a_{i} b_{j} c_{k}\right) \log 1=0 \\ I(X Y ; Z) &=I(Y ; Z) \end{aligned} I(Y;Z)I(XY;Z)I(XY;Z)=i=1rj=1sk=1Lp(aibjck)logp(ck/aibj)p(ck/bj)=i=1rj=1sk=1Lp(aibjck)log1=0=I(Y;Z)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值