【无标题】

from pyecharts import options as opts
from pyecharts.charts import Bar, Grid, Line, Radar, Pie

# 定义数据
data1 = ['2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021']
v1 = [87430, 90912, 96225, 101885, 107147, 116390, 105764, 120215]
v2 = [7.40, 4.00, 5.83, 5.81, 5.16, 8.63, -9.13, 13.66]

# 创建柱状图
bar1 = (
    Bar()
    .add_xaxis(data1)
    .add_yaxis("诊疗量", v1, z=0, color="pink", xaxis_index=0, yaxis_index=0)  # 添加柱状图数据,设置颜色和坐标轴
    .extend_axis(
        yaxis=opts.AxisOpts(
            name="同比增速(%)",
            min_=-20,
            max_=20,
            axislabel_opts=opts.LabelOpts(formatter="{value}%"),  # 设置坐标轴标签格式
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color="pink")  # 设置坐标轴线样式
            ),
        )
    )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=True))  # 设置数据标签显示
    .set_global_opts(
        yaxis_opts=opts.AxisOpts(
            name="诊疗量(万人次)",
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color="pink")  # 设置坐标轴线样式
            ),
        ),
        title_opts=opts.TitleOpts(title="2014-2021年中国中医类医疗卫生机构诊疗量"),  # 设置标题
        legend_opts=opts.LegendOpts(pos_right="10%"),  # 设置图例位置
    )
)

# 创建折线图
line1 = Line().add_xaxis(data1).add_yaxis("同比增速", v2, color="pink", xaxis_index=0, yaxis_index=1)  # 添加折线图数据,设置颜色和坐标轴

# 创建数据列表
list1 = [
    {"value": 20.3, "percent": 20.3 / (20.3 + 79.7)},  # 计算百分比
    {"value": 22.0, "percent": 22.0 / (22.0 + 78.0)},
    {"value": 23.5, "percent": 23.5 / (23.5 + 76.5)},
    {"value": 22.5, "percent": 22.5 / (22.5 + 77.5)},
    {"value": 22.3, "percent": 22.3 / (22.3 + 77.7)},
]

list2 = [
    {"value": 79.7, "percent": 79.7 / (20.3 + 79.7)},  # 计算百分比
    {"value": 78.0, "percent": 78.0 / (22.0 + 78.0)},
    {"value": 76.5, "percent": 76.5 / (23.5 + 76.5)},
    {"value": 77.5, "percent": 77.5 / (22.5 + 77.5)},
    {"value": 77.7, "percent": 77.7 / (22.3 + 77.7)},
]

# 创建堆叠柱状图
bar3 = (
    Bar()
    .add_xaxis([2019, 2020, 2021, 2022, 2023])
    .add_yaxis("跨国企业占比", list1, stack="stack1", xaxis_index=1, yaxis_index=2)  # 添加堆叠柱状图数据,设置堆叠方式和坐标轴
    .add_yaxis("本土企业占比", list2, stack="stack1", xaxis_index=1, yaxis_index=2)  # 添加堆叠柱状图数据,设置堆叠方式和坐标轴
    .set_global_opts(
        title_opts=opts.TitleOpts(title='全国药店中药饮片供应商占比情况', pos_top="50%", pos_left="35%"),  # 设置标题和位置
        legend_opts=opts.LegendOpts(is_show=False),  # 隐藏图例
    )
)

# 创建饼图
pie2 = (
    Pie()
    .add(
        "",
        [
            ('20岁以下', 2.2),
            ('20-30岁', 27.9),
            ('31-40岁', 56.2),
            ('41-50岁', 10.9),
            ('51岁以上', 2.8)
        ],
        center=["20%", "80%"],  # 设置饼图中心位置
        radius=[30, 80]  # 设置饼图半径范围
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title='中药材消费者画像数据', pos_top="50%"),  # 设置标题和位置
        legend_opts=opts.LegendOpts(is_show=False),  # 隐藏图例
    )
)

# 将柱状图和折线图叠加在一起
overlap_1 = bar1.overlap(line1)  # 叠加柱状图和折线图

# 创建网格布局
grid = (
    Grid()
    .add(overlap_1, grid_opts=opts.GridOpts(pos_bottom="58%"), is_control_axis_index=True)  # 添加叠加图表到网格布局,设置位置和坐标轴
    .add(
        bar3,
        grid_opts=opts.GridOpts(pos_top="58%", pos_bottom="5%", pos_left="40%", pos_right="35%"),  # 设置位置
        is_control_axis_index=True
    )
    .add(
        pie2,
        grid_opts=opts.GridOpts(pos_top="58%", pos_right="65%"),  # 设置位置
        is_control_axis_index=True
    )
)

# 在notebook中渲染图表
grid.render_notebook()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值