NLTK查看

nltk.sent_tokenize(text) #对文本按照句子进行分割

nltk.word_tokenize(sent) #对句子进行分词,当输入的是包含多个句子的文档时,返回列表,每个列表包含对应句子的分词结果。

for word in word_tokenize(document):
            texts_tokenized_tmp += jieba.analyse.extract_tags(word,10)
        texts_tokenized.append(texts_tokenized_tmp)  
document包含很多个句子,那么word_tokenize(document)返回一个列表,表示每个句子为单位的分词结果。所以for循环时,变量word其实是很多个词。jieba.analyse.extract_tags(word, 10)是从word中根据TF-IDF顺序选取10个得分最高的,目的是过滤低词频单词。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值