人群常用数据集

转载:
版权提示: GitHub:人群密度估计最全资料集锦

    <link rel="stylesheet" href="https://csdnimg.cn/release/blogv2/dist/mdeditor/css/editerView/ck_htmledit_views-b5506197d8.css">
            <div id="content_views" class="markdown_views prism-atom-one-dark">
                <svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
                    <path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path>
                </svg>
                <p></p>

GitHub:人群密度估计最全资料集锦

文章目录:


整理过的awesome系列项目:

本文就给大家推荐一个人群密度估计(Crowd Counting)的最全资料项目:Awesome-Crowd-Counting。

https://github.com/gjy3035/Awesome-Crowd-Counting

Awesome-Crowd-Counting

该项目主要包含以下内容:

  • 代码
  • 数据集
  • 论文
  • 排行榜

代码

原作者 Junyu Gao 开源了一个基于PyTorch的人群密度估计库,其名称为:Crowd Counting Code Framework,缩写为 C^3 Framework。该库可以在多种主流数据集上测试,提供很棒的baselines。

https://github.com/gjy3035/C-3-Framework
在这里插入图片描述
注:原作者Junyu Gao在CVPR 2019上发表了一篇人群密度估计相关的论文(果然是大佬)。感兴趣的同学可以看一下:

《Learning from Synthetic Data for Crowd Counting in the Wild》

https://arxiv.org/abs/1903.03303

数据集

下面的数据集都是经典常用的,原文中都提供了下载链接,整理的很用心。

  • GCC Dataset
  • UCF-QNRF Dataset
  • ShanghaiTech Dataset
  • WorldExpo’10 Dataset
  • UCF CC 50 Dataset
  • Mall Dataset
  • UCSD Dataset
  • SmartCity Dataset
  • AHU-Crowd Dataset

论文
论文分arXiv上的论文和已发表的顶会/顶刊论文(如CVPR、AAAI、T-PAMI、WACV、ACCV、TIP、ECCV和IJCAI等)

arXiv上的论文
在这里插入图片描述
2019 顶会/顶刊论文
在这里插入图片描述
2018 顶会/顶刊论文
在这里插入图片描述
注:还有2017、2016、2015及以后的论文,此处省略

排行榜

排行榜:不同数据集上不同算法的实验结果。

ShanghaiTech Part A 数据集
在这里插入图片描述
ShanghaiTech Part B 数据集
在这里插入图片描述
UCF-QNRF 数据集
在这里插入图片描述
WorldExpo’10 数据集
在这里插入图片描述

### OpenPose相关的群体数据集 OpenPose是一种广泛应用于多人姿态估计的技术,其依赖高质量的数据集来训练模型并提升性能。以下是几个常用的与OpenPose相关的群体数据集及其下载方式: #### 1. **COCO (Common Objects in Context)** 数据集 COCO 是一个多目标检测和分割数据集,其中包含了大量的人体姿态标注图像。该数据集被广泛用于多人姿态估计的研究中[^2]。 - 下载地址: [COCO Dataset](https://cocodataset.org/#download) - 特点: COCO 提供了超过 20 万张图片,每张图片平均有多个对象实例,适合用来训练复杂的多人群场景下的姿态估计算法。 #### 2. **MPII Human Pose** 数据集 尽管 MPII 主要针对单人姿态估计设计,但它也包含了一些具有挑战性的多人场景样本[^1]。 - 下载地址: [MPII Human Pose](http://human-pose.mpi-inf.mpg.de/) - 特点: 这一数据集中含有约 25,000 幅带有人体关节标记的真实世界照片,覆盖多种日常活动情境。 #### 3. **CrowdPose** CrowdPose 是专门为拥挤场景下的人体姿态估计而创建的一个新基准测试集合。它特别关注高密度人群中个体之间的遮挡情况以及复杂姿势变化等问题[^3]。 - 下载地址: [GitHub - CrowdPose](https://github.com/Jeff-sjtu/CrowdPose) - 特点: 包含大约 20K 张带有密集人群分布的照片;相比其他同类资源更加注重极端条件下的表现评估。 #### 示例代码片段:加载COCO数据集 如果计划使用Python处理这些数据集,则可以借助`pycocotools`库轻松读取JSON文件格式的标签信息。 ```python from pycocotools.coco import COCO # 初始化COCO API dataDir='./path/to/coco' dataType='train2017' # 或者 'val2017', 取决于所需子集 annFile='{}/annotations/person_keypoints_{}.json'.format(dataDir,dataType) coco_kps=COCO(annFile) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值