文献阅读
文章平均质量分 82
hjxu2016
好记性不如烂笔头|
独乐乐不如众乐乐|
你的纠错与关注就是对我最大的支持
展开
-
【异常检测论文阅读 1】EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies
检测图像中的异常是一个重要的任务,特别是在实时的计算机视觉应用中提出了一种轻量级的特征提取器,可以在现代GPU上不到一毫秒的时间内处理图像使用学生-教师的方法来检测异常特征训练一个学生网络来预测提取的正常特征,在测试时,通过学生不能预测异常特征来检测异常。提出了一个训练损失,可以阻止学生模仿教师的特征提取器提取正常图像之外的特征(也就是,学生网络只能提取正常特征,提取不了异常特征,这样就可以把异常特征差分出来)能够大大降低了学生-教师模型的计算成本,同时提高了对异常特征的检测。原创 2024-04-17 14:57:04 · 1817 阅读 · 0 评论 -
【闲读 7】如何发现单一要素、错位竞争、如何提高组合成功率
单一要素是指与企业相关的关键要素当外部关键要素发生十倍速变化,可能会导致战略转折点;单一要素最大化:识别外部十倍速变化关键要素,聚焦与之相关的内部关键要素,重度投入资源,击穿阈值。原创 2023-12-22 14:47:15 · 1063 阅读 · 0 评论 -
【闲读 6】单一要素:抓重点,知道解决问题突破口
如果某个单一要素发生十倍速变化,就是这条曲线即将产生破局点的标注。任何破局点都有临界值,只有突破临界值,才能击穿破局点。想要突破临界值,必须把力量集中到一个点。这种方法叫做单一要素最大化,即聚焦第一曲线的某一个核心要素,重度投入资源,把它变成第二曲线的全部。 如何判断破局点?找到单一要素十倍速变化?原创 2023-12-22 14:20:10 · 1073 阅读 · 0 评论 -
【闲读4】组合创新:拆与组,发现解决问题的新方向以及组合创新应用落地四步法
当我们想起“创新”,我们通常会把它和“发明”、“技术”、“创造”联系在一起,我们通常以为“创新”是把一些东西从无到有做出来,才叫做创新,这是对创新的严重误解。其实真正的创新叫“组合式创新”。什么是组合式创新?如何进行组合式创新?原创 2023-12-22 14:00:17 · 1443 阅读 · 0 评论 -
Transformer 简单理解
参考自。原创 2023-10-24 09:58:19 · 167 阅读 · 0 评论 -
【自监督论文阅读 4】BYOL
介绍了一种新的自监督图像表示学习方法BYOL(Bootstrap Your Own Latent )。在没有负样本对的情况下,达到了SOTA的水平原创 2023-06-28 15:19:13 · 1646 阅读 · 0 评论 -
【自监督论文阅读 3】DINOv1
展示了自监督预训练Vit模型的潜力- KNN分类中特征质量有在图像检索中的潜力- 特征中场景布局信息的存在,有利于弱监督图像分割- 自监督学习可能是发展BERT-Like的key原创 2023-06-21 16:45:10 · 2109 阅读 · 2 评论 -
【自监督论文阅读 2】MAE
MAE论文理解:展示了一个图像领域的BERT,通过非对称的自编码解码结构,随机对mask图像块进行重构,取得了SOTA的效果原创 2023-06-19 17:12:54 · 1212 阅读 · 1 评论 -
【自监督论文阅读 1】SimCLR
自监督学习SimCLR论文理解原创 2023-06-15 14:40:40 · 1423 阅读 · 1 评论 -
论文导读:实时语义分割网络BiSeNetV1和v2
文章目录一、背景二、BiSeNetV1三、BiSeNetV2v1论文地址:BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentationv2论文地址:BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation一、背景低水平的细节特征(spatial information 空间信息)和高水平原创 2022-01-05 20:49:40 · 5025 阅读 · 0 评论 -
CenterNet:Object as Points
转载 论文精读——CenterNet :Objects as Points论文地址:https://arxiv.org/pdf/1904.07850.pdf 发布时间:2019.4.16 机构:UT Austin,UC Berkeley 代码:https://github.com/xingyizhou/CenterNet Abstract 目标检测识别往往在图像上将目标用矩形框形式框出,该框的水平和垂直轴与图像的水平和垂直转载 2020-11-18 09:30:36 · 890 阅读 · 0 评论 -
FCOS算法理解
文章目录一、Anchor-based的缺点二、FCOS算法框架三、FCOS的后处理四、参考文献FCOS是一片Anchor Free的目标检测算法,对每个像素进行直接预测,预测的目标是到bounding box的上、下、左、右边的距离,非常的直观,同时引入FPN结构,利用不同的层来处理不同的目标框。另外,创新性引入了Center-ness layer,过滤掉大部分的误检框。论文名称:FCOS:Fully Convolutional One-Stage Object Detection论文链接:https原创 2020-11-12 15:16:19 · 2963 阅读 · 1 评论 -
SSD目标检测相关知识和代码整理
注:都是转载一、SSD论文翻译(转载)二、论文阅读:SSD: Single Shot MultiBox Detector三、论文代码-caffe原生版本四、论文代码-TensorFlow版本原创 2020-01-20 14:52:58 · 368 阅读 · 0 评论 -
MobileNet相关知识整理
一、MobileNetV1 & MobileNetV2 简介(超级推荐)二、Depthwise卷积与Pointwise卷积(Depthwise卷积的提出,大大较少了参数量,论文的主要贡献)三、参数量计算四、论文笔记五、论文地址六、相关代码caffe实现: https://github.com/shicai/MobileNet-Caffe民间实现:caffe | Tensorf...原创 2019-12-04 11:40:13 · 297 阅读 · 0 评论 -
卷积神经网络中卷积的理解
转自https://blog.csdn.net/nicajonh/article/details/53142449?locationNum=2&fps=11 前言 2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”。 ...转载 2018-03-23 11:27:43 · 1067 阅读 · 0 评论 -
混淆矩阵(Confusion Matrix)分析
转自 http://blog.csdn.net/vesper305/article/details/44927047ContentConfusionMatrixExampleTalbe ofconfusionPreference Confusion Matrix在机器学习领域,混淆矩阵(confusion matrix),又称为可能性表格或是错误矩阵。它是一种转载 2017-05-31 09:10:23 · 9029 阅读 · 0 评论 -
ROC曲线和AUC值的相关知识
http://www.cnblogs.com/dlml/p/4403482.html转自http://blog.csdn.net/zdy0_2004/article/details/44948511分类器性能指标之ROC曲线、AUC值一 roc曲线1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同转载 2017-09-27 10:17:02 · 473 阅读 · 0 评论 -
卷积神经网络结构分析
http://blog.csdn.net/bea_tree/article/details/51530165终于进入我们的主题了ConvNets或者CNNs,它的结构和普通神经网络都一样,之前我们学习的各种技巧方法都适用,其主要不同之处在于: ConvNet假定输入的是图片,我们根据图片的特性对网络进行设定以达到提高效率,减少计算参数量的目的。1. 结构总览首先我们分析下传统神......转载 2017-11-29 10:07:43 · 3330 阅读 · 0 评论 -
乳腺癌全景图像转移检测相关论文整理
近期涉及论文写作,只能从头理一遍乳腺癌转移检测的相关论文,首先这是基于camelyon竞赛,以及相关一些关于wholeslide图像处理的相关论文整理。16年,ISBI举办了乳腺前哨淋巴结检测的挑战,简称Camelyon16,官方链接地址https://camelyon16.grand-challenge.org/哈弗大学医学院取得了这次竞赛的第一名,并发表了他们竞赛的一些方法,通过p...原创 2018-01-11 17:52:19 · 2372 阅读 · 0 评论 -
Densely Connected Convolutional Networks 阅读
https://blog.csdn.net/u014380165/article/details/75142664论文:Densely Connected Convolutional Networks 论文链接:https://arxiv.org/pdf/1608.06993.pdf 代码的github链接:https://github.com/liuzhuang1...转载 2018-04-04 11:24:44 · 362 阅读 · 0 评论 -
图像中的卷积理解
转载可能有点模糊,请移植原始博客http://blog.csdn.net/xueyedie1234/article/details/51577495图像处理算法——卷积本文索引:http://blog.csdn.net/xueyedie1234/article/details/51577495 一 什么是卷积 二 相关算子 三 卷积算子 四 边缘效应 五 常用的卷积核及其用途 六 一个例子使用卷积...转载 2018-03-16 17:05:15 · 3281 阅读 · 0 评论 -
caffe中的多种loss函数
https://blog.csdn.net/u012177034/article/details/52144325机器学习的目的就是通过对训练样本输出与真实值不一致的进行惩罚,得到损失Loss,然后采用一定的优化算法对loss进行最小优化,进而得到合理的网络权值。本文介绍Caffe中含有的常见的LossLayer及其参数设置方法Caffe的LossLayer主要由6个:(1)Contrastive...转载 2018-03-29 08:50:04 · 2239 阅读 · 0 评论 -
深入了解机器学习需要的一些数学知识
趁着最后一个暑假,总结并收集一些关于学习机器学习前需要储备理论知识,持续更新一、范数的作用不多说,可以用来做回归,做损失函数等,下面传送门是关于范数的理解几种范数的简单介绍二、关于拉格朗日乘子法、KKT条件、拉格朗日对偶性,是推导公式“支持向量机”必须用到的前提知识拉格朗日乘子法、KKT条件、拉格朗日对偶性三、关于batch normalization,大家都知道,bn层是将特...转载 2018-07-25 16:25:42 · 354 阅读 · 0 评论 -
RNN以及LSTM的一些理解
做个记号,方便下次阅读。转自,一、https://blog.csdn.net/zhaojc1995/article/details/80572098二、BiLSTM介绍及代码实现转载 2019-07-22 16:45:07 · 135 阅读 · 0 评论