detectron2更新Pytorch版本后的报错记录

不知道什么时候,更新了Pytorch的版本,然后打开Dectron2就遇到了一系列的报错

既然遇到了错误,那就得记录下来,省的下次再各种百度谷歌

错误一:detectron2遇到 undefined symbol: _ZN6caffe26detail36_typeMetaDataInstance_preallocated_7E

更新Torch版本后,Detectron2是需要重新安装的,博主这里了也就重装了,但重装方式不对,
首先cd到deectron2中所在的文件夹,然后先需要删除库文件,博主就是没有删除,直接重新安装了,然后报了如上错误。

rm -rf build/ **/*.so # 删除
sudo pip3 install -e. # 安装

错误二:detectron2遇到 ImportError: cannot import name '_C’
博主重装时,使用的是

python setup.py build develop # 错误方法

命令,如果是初次安装,当然没有问题,但重装时,这个命令貌似没有把系统环境变量里的库给卸载了,博主使用如下命令解决问题。

sudo pip3 install -e. # 正确安装
PyTorch中,计算图(Computational Graph)是自动微分(Automatic Differentiation, autograd)的基础,它允许你定义一个数据流图,其中节点表示操作,边表示数据流动。如果你遇到报错,可能是以下几个常见问题: 1. **`RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation`**:这通常发生在你尝试在一个已经存在的张量上进行就地操作(in-place operation),比如 `x += y`,而这个操作在计算梯度时不允许。解决方法是避免就地操作,或使用 `.clone()` 创建一个新的张量进行计算。 2. **`grad can't be converted to Tensor`**: 当梯度计算出现问题时,可能会遇到这种错误。可能是由于操作返回的是非张量类型(如标量或非数值类型)。确保你的操作返回的是一个可以计算梯度的张量。 3. **`RuntimeError: output tensor with more than 1 value is not supported`**: 这个错误发生在模型的输出是多个值,但autograd期望单个值作为输出。你需要检查模型是否正确地包装了输出,或者是否需要调整损失函数以处理多输出情况。 4. **`AttributeError: 'Tensor' object has no attribute '...'`**: 这意味着你试图访问一个张量对象没有的方法或属性。确保你使用的API和库版本兼容,或者查阅相关文档确认张量是否支持该操作。 如果遇到具体报错信息,记得提供详细的错误内容,这样可以帮助更好地定位问题。遇到这类问题时,一些常见的解决方案包括检查代码逻辑、更新库到最新版本、查看官方文档或社区论坛上的解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值