rapidjson!完美的C++解析json库

本文通过实际案例展示了如何使用RapidJson库解析JSON文件,并对比了其与JsonCpp等库的优势。介绍了RapidJson的基本使用方法,包括读取JSON文件、获取浮点数、解析数组及字符串等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

感谢开源! git上有很多解析json的库文件,比如常见的JsonCpp、cJSON等,这些都能满足正常使用。但一旦有了速度、轻量化、简便的追求,就不得不比较一下各个库的优劣了。
荡某乎上的一张各种比较json的性能图,可以看出,rapdJson处于领先地位!
楼主自从体验了rapidJson,就果断放弃了JsonCpp,原因也很简单!

RapidJson的github地址:
https://github.com/Tencent/rapidjson

  • 只有头文件,也只需要包含头文件!jsoncpp还需要内置编译或编译成库,麻烦
  • 只支持标准的json文件,不标准的不支持,按照标准来,节约成本!
  • 当然,缺点也很明显,代码接口复杂,代码量比较大

某知乎地址:
https://www.zhihu.com/question/23654513
在这里插入图片描述

一、解析json文件的Demo

char *pchJsonPath = "config.json";
std::ifstream file(pchJsonPath);
std::string strJson((std::istreambuf_iterator<char>(file)),
	std::istreambuf_iterator<char>());
rapidjson::Document doc;
doc.Parse(strJson.c_str());

解析后,需要判断一下解析是否成功

if (doc.HasParseError())
{
	printf("解析json文件失败,请检查json是否正确!\n");
}

然后再将赋值给json中的Value,

rapidjson::Value& jsonObj = doc;

这里的Value就相当于字典

1、解析json中的Std所保存的Float值

if (jsonObj.HasMember("Std")) // 一定要判断,如果没有key,会导致代码直接报错
{
	tOpenParam.fStd = jsonObj["Std"].GetFloat();
}
else
{
	printf("请检查,key中没有发现 Std");
	hr = E_INVALIDARG;
}

2、解析json中的数组

if (jsonInputNode.HasMember("Shape"))
{
		rapidjson::Value& jsonShape = jsonInputNode["Shape"];
		if (jsonShape.IsArray())
		{
			
			for (rapidjson::SizeType idxType = 0; idxType < jsonShape.Size(); ++idxType)
			{
				std::cout << jsonShape[idxType].GetInt() << " ";
			}
		}
	}

3、解析字符串

if (jsonObj.HasMember("DeviceType"))
{
	std::string strDeviceType = jsonObj["DeviceType"].GetString();
	
}

每次都需要检查,代码量就显的比较大,也比较杂乱,这也劝退了一部分人,所以最好在原来的基础上,再封装一层代码,比如用CKECK_ERROR来替换jsonObj.HasMember

### 解析 Import Error 的常见原因 当遇到 `ImportError: cannot import name 'Generic'` 错误时,通常意味着尝试从模块中导入的对象不存在或无法访问。此问题可能由多种因素引起: - 版本不兼容:不同库之间的版本冲突可能导致此类错误。 - 安装缺失:目标库未正确安装或路径配置有误。 - 导入语句不当:可能存在循环依赖或其他语法层面的问题。 ### 针对 Generic 类型的具体解决方案 对于特定于 `Generic` 的情况,考虑到 Python 中 `Generic` 是 typing 模块的一部分,在处理该类别的 ImportError 时可采取如下措施[^1]: #### 方法一:确认typing模块可用性 确保环境中已安装标准库中的 typing 模块,并且其版本支持所使用的特性。可以通过以下命令验证: ```bash python -c "from typing import Generic; print(Generic)" ``` 如果上述命令执行失败,则可能是由于 Python 或者相关扩展包的版本过低造成的。此时应考虑升级至更高版本的解释器以及对应的开发工具链。 #### 方法二:调整导入方式 有时直接通过顶层命名空间来获取所需组件会更稳定可靠。修改代码以采用这种做法可能会解决问题: ```python from collections.abc import Iterable # 如果是迭代器相关接口 from typing import TypeVar, Protocol # 对于协议和泛型定义 T = TypeVar('T') class MyContainer(Protocol[T]): ... ``` 注意这里并没有显式提到 `Generic` ,而是利用了更为基础的数据结构抽象基类或是其他替代方案实现相同功能[^2]。 #### 方法三:排查环境变量设置 检查系统的 PYTHONPATH 和虚拟环境配置是否正常工作。任何异常都可能导致某些第三方软件包找不到必要的资源文件而引发类似的错误提示。建议清理并重建项目专属的工作区以便排除干扰项的影响。 #### 示例修正后的代码片段 假设原始代码试图这样引入 `Generic` : ```python from some_module import Generic # 可能导致 ImportError ``` 改为遵循官方文档推荐的方式后变为: ```python from typing import Generic # 正确的做法 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值