📌 引言:为什么我们离不开 RAG?
随着大语言模型(LLM)在各类场景中崭露头角(如 ChatGPT、通义千问等),我们发现它们强大却又受限:
问题 | 描述 |
---|---|
知识截止 | 模型知识固定于训练时间,例如 2023-10 前 |
内容幻觉 | 模型生成听起来合理但实则错误的内容 |
用户定制 | 企业私有知识无法注入预训练模型中 |
这时,RAG(Retrieval-Augmented Generation)诞生了:结合检索系统与生成模型,将“记忆外”知识动态接入,成为大模型的记忆外挂。
一、RAG 本质原理详解
1.1 什么是 Retrieval-Augmented Generation?
RAG 是一种 生成前先“查资料”的方法,由 Facebook AI(现 Meta)在 20