FCOS算法理解


FCOS是Anchor Free的目标检测算法,对每个像素进行直接预测,预测的目标是到bounding box的上、下、左、右边的距离,非常的直观,同时引入FPN结构,利用不同的层来处理不同的目标框。另外,创新性引入了Center-ness layer,过滤掉大部分的误检框。

论文名称:FCOS:Fully Convolutional One-Stage Object Detection
论文链接:https://arxiv.org/abs/1904.01355
代码链接:https://github.com/tianzhi0549/FCOS/

一、Anchor-based的缺点

  • Anchor的设计非常重要,需要小心的调整超参数,以SSD、YOLOV2、V3等为例,超参数的选择对最终结果影响盛大
  • 即使仔细的设计了超参数,也难以所有形状的目标
  • 为了取得较好的召回率,一般需要选取大量的anchor,再结合FPN结构,正负样本就多了,现存消耗也就比较大

基于以上问题,作者在CornerNet、DenseBox等Anchor-Free后,提出了FCOS。

二、FCOS算法框架

在这里插入图片描述基础backbone是一个3层的卷积网络(对应图中C3,C4,C5),Pyramid特征金字塔构建完成P3-P7(可自行选择)每个金字塔层对应一个预测头(Head)。

其中Head层分为3个预测分支,1个分类得分(HWC) + 1个位置回归(HW4)+ 1个Center-ness(过滤误检框HW1), C指类别数,H和W为特征图谱的大小。

  • Classification采用的是多次二类分类器(C binary classifier),通俗的将,就是每个特征图后,接一个sigmoid,然后再用focal
    loss损失。(Yolov3的分类器也是从softMax转到多次sigmoid)
  • Regression输出4维向量,分别对应点到上下左右边的距离,训练的时候,loss采用IOU loss

在这里插入图片描述
具体损失函数公式如下:
在这里插入图片描述

  • Center-ness层的引入可以进一步降低目标的误检测 主要目标就是找到目标的中心点,即离目标中心越近,输出值越大,反之越小。 中心点目标定义如下,可见最中心的点的centerness为1,距离越远的点,centerness的值越小。

在这里插入图片描述
损失函数采用 BCE loss,并且增加在回归损失和分类损失后。

三、FCOS的后处理

上面可知,FCOS的网络的每层FPN有三个输出,分别是
ClassificationRegressionCenter-ness
在推断的时候,需要进一步对网络的输出进行处理,毕竟我们需要的是目标框和类别。
论文里提到,在特征图上可以获取到 分类得分和回归位置,然后取分类得分大于0.05的作为正样本,并且根据以下公式反推计算得出框

在这里插入图片描述
那这个分类得分是怎么得到的呢?
这时候center-ness的作用就来了。

  • 网络的输出 Classification 乘 center-ness计算出中心点得分。
  • center-ness的值离检测框中心点越远,值就越低,所以这一步可以过滤一部分误检框,作者选择分类得分大于0.05的作为正样本。也就是乘center-ness值后,越远离中心点的框,得分就越来越低,再接上NMS,可以获取和Anchor-Based不分高下。

另外一个值得注意的是,如果使用的是作者提供的源码, Classification 和center-ness相乘时,别忘记各自接一个sigmoid函数(可以保证值不会出现负数)。
且作者源码里对 Classification-Score进一步做了开根号处理,这点在论文里没有见到,大约是相乘后,得分比较低,开个根号可以提高一下得分值(可以看成概率,再通过概率再过滤一遍,得分太低,不好看~)

笔者在后端部署时,就遇到得分不一致的问题,查看FCOS源码后,才发现没有开根号。
在这里插入图片描述!

四、参考文献

Anchor Free检测算法之FCOS

FCOS算法详解

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
R-CNN系列算法: 优点:检测精度高,能够检测出小目标。 缺点:速度慢,需要多次运行CNN网络,不适用于实时应用场景。 适用场景:对检测精度要求较高的场景,如安防监控等。 YOLO系列算法: 优点:速度快,可以实现实时检测,适用于移动端应用。 缺点:对小目标检测效果不佳,检测精度相对较低。 适用场景:对实时性要求较高的场景,如自动驾驶等。 SSD系列算法: 优点:速度快,可以实现实时检测,对小目标检测效果较好。 缺点:对大目标检测效果不如R-CNN系列算法。 适用场景:对实时性要求较高,同时对小目标检测要求较高的场景。 RetinaNet算法: 优点:在保证检测精度的同时,速度相对较快。 缺点:对于极小目标的检测效果不佳。 适用场景:对检测精度和速度都有一定要求的场景。 CenterNet算法: 优点:在保证检测精度的同时,速度相对较快,对小目标检测效果较好。 缺点:对于大目标的检测效果不如R-CNN系列算法。 适用场景:对检测精度和速度都有一定要求,同时对小目标检测要求较高的场景。 FCOS算法: 优点:对于不同大小的目标都能够进行有效的检测。 缺点:对于密集目标的检测效果不佳。 适用场景:对于目标大小差异较大的场景。 CornerNet算法: 优点:对于遮挡、截断等情况下的目标检测效果较好。 缺点:对于密集目标的检测效果不佳。 适用场景:对于目标遮挡、截断等情况较多的场景。 EfficientDet算法: 优点:在保证检测精度的同时,速度相对较快,同时能够检测出不同大小的目标。 缺点:需要较大的计算资源。 适用场景:对检测精度和速度都有一定要求,同时对目标大小差异较大的场景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值