压缩感知
文章平均质量分 90
程序员学编程
会一点python,Go,C的程序员,欢迎大家关注。
展开
-
压缩感知介绍
(说明:本文是根据压缩ga)原创 2014-09-20 16:16:20 · 2174 阅读 · 0 评论 -
初识贝叶斯压缩感知
一、贝叶斯理论:1. 先验信息:在抽样前有关统计推断的一些信息,贝叶斯公式数学表达为: P(A|B)=P(A,B)P(B)(公式1)P(A|B)= \frac{P(A ,B)}{P(B)} (公式1) 2. 先验分布:将θ∈Θ\theta\in\Theta当作取值于Θ\Theta的随机变量,若θ∈Θ\theta\in\Theta满足概率密度函数p(θ)p(\theta),则称原创 2015-04-07 15:56:06 · 14492 阅读 · 11 评论 -
压缩感知重构算法之IRLS算法python实现
IRLS(iteratively reweighted least squares)算法(本文给出的代码未进行优化,只是为了说明算法流程 ,所以运行速度不是很快) IRLS(iteratively reweighted least squares)算法是压缩感知重建算法当中的一个基本算法。主要是为了解决 minu||u||pp, subject to Φu=b\min_{u}||u||_p^p,原创 2016-04-06 18:57:16 · 10888 阅读 · 3 评论 -
压缩感知重构算法之OLS算法python实现
Orthogonal Least Squares (OLS)算法流程实验要利用python实现,电脑必须安装以下程序python (本文用的python版本为3.5.1)numpy python包(本文用的版本为1.10.4)scipy python包(本文用的版本为0.17.0)pillow python包(本文用的版本为3.1.1)python代码#原创 2016-04-05 21:00:57 · 5355 阅读 · 3 评论 -
压缩感知重构算法之IHT算法python实现
IHT(iterative hard thresholding )算法是压缩感知中一种非常重要的贪婪算法,它具有算法简单的有点,且易于实现,在实际中应用较多。本文给出了IHT算法的python和matlab代码(本文给出的代码未经过优化,所以重建质量不是非常好),以及完整的仿真过程。 算法流程python代码要利用python实现,电脑必须安装以下程序python (本文用的python版本为3.原创 2016-03-19 20:47:43 · 5647 阅读 · 1 评论 -
压缩感知重构算法之SP算法python实现
SP(subspace pursuit)算法是压缩感知中一种非常重要的贪婪算法,它有较快的计算速度和较好的重构概率,在实际中应用较多。本文给出了SP算法的python和matlab代码,以及完整的仿真过程。SP算法流程:代码要利用python实现,电脑必须安装以下程序python (本文用的python版本为3.5.1)numpy python包(本文用的版本为1.10.4)scipy pyt原创 2016-03-19 09:44:33 · 7930 阅读 · 4 评论 -
压缩感知重构算法之CoSaMP算法python实现
算法流程算法分析python代码要利用python实现,电脑必须安装以下程序python (本文用的python版本为3.5.1)numpy python包(本文用的版本为1.10.4)scipy python包(本文用的版本为0.17.0)pillow python包(本文用的版本为3.1.1)#coding:utf-8#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%原创 2016-03-19 22:38:11 · 9042 阅读 · 10 评论 -
压缩感知重构算法之OMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现本文主要简单介绍了利用python代码实现压缩感知的过程。压缩感知简介【具体可以参考这篇文章】 假设一维信号x原创 2016-03-18 15:08:55 · 23169 阅读 · 35 评论 -
K-SVD算法
1:固定字典D通过下面的目标函数采用yi原创 2014-09-20 18:52:54 · 15499 阅读 · 19 评论 -
基于稀疏表示的人脸识别
本文简单介绍了稀疏表示理论,然后从人脸识别领域的运用给出了代码示例。稀疏表示理论理论稀疏表示求解稀疏表示用于人脸识别理论代码参考文献稀疏表示理论理论为了简单说明,采用一维信号进行讲解。一维离散信号X是RNR^N 上的 维的列向量,记为 X=[x1,x2,x3.....xn]X=[x_1,x_2,x_3.....x_n]。如果信号中非零值个数K远小于N,则该信号是稀疏信号。如果信号不稀疏原创 2016-03-12 17:12:43 · 3101 阅读 · 2 评论 -
相关向量机(RVM)
【说明:这片篇博文为翻译伦敦大学学院一位老师写的资料,水平有限翻译不准确的地方请参见一下英文的文档。英文版的下载:链接】简介这篇文档主要是为了帮助刚入门机器学习的学生更好的理解Tipping的相关向量机(RVM:Relevance Vector Machines)。本文档假设读者具有一定的贝叶斯理论,高斯分布以及条件和边缘高斯分布的理论知识。并且熟悉矩阵微分、回归向量的表示和核函数。(译者:可以参考翻译 2015-04-25 20:15:59 · 12059 阅读 · 6 评论 -
基于压缩感知的分布式视频编码框架matlab代码
刚刚开始学习分布式压缩感知,写下了这个分布式压缩感知的代码,现在上传上来和大家分享交流。如果有什么问题请在这篇博文下面评论即可,看到之后我会回复的。以下为本程序说明:详细的请看程序代码。本次主要程序是myDCS_test_3。程序测试10个GOP,每个GOP内3帧,第1和3帧作为关键帧,第二帧为CS帧。关键帧的采样率设为1,CS帧设为0.3,CS帧采用2种方法训练字典:1、边信息训练字典原创 2014-12-28 11:04:23 · 3388 阅读 · 16 评论