pandas学习(四)--数据的归一化

Pandas学习(一)–数据的导入
pandas学习(二)–双色球数据分析
pandas学习(三)–NAB球员薪资分析
pandas学习(四)–数据的归一化
pandas学习(五)–pandas学习视频

完整文章目录:目录

归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式。主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理。

##常见归一化算法
###1、min-max标准化(Min-Max Normalization)

也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数如下: x ^ = x − x m i n x m a x − x m i n \hat x=\frac{x-x_{min}}{x_{max}-x_{min}} x^=xmaxxminxxmin其中max为样本数据的最大值,min为样本数据的最小值。这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

###2、Z-score标准化方法

这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,转化函数为: x ^ = x − μ σ \hat x=\frac{x-\mu}{\sigma} x^=σxμ
其中为 μ \mu μ所有样本数据的均值, σ \sigma σ为所有样本数据的标准差。该种归一化方式要求原始数据的分布可以近似为高斯分布,否则处理的效果会变差。
##pandas归一化方法

###1、min-max标准化

import numpy as np
import pandas as pd

np.random.seed(1)
df = pd.DataFrame(np.random.randn(4, 4) * 4 + 3)
print(df)
"""
          0         1         2         3
0  9.497381  0.552974  0.887313 -1.291874
1  6.461631 -6.206155  9.979247 -0.044828
2  4.276156  2.002518  8.848432 -5.240563
3  1.710331  1.463783  7.535078 -1.399565

"""
df_norm = (df - df.min()) / (df.max() - df.min())
print(df_norm)
"""
          0         1         2         3
0  1.000000  0.823413  0.000000  0.759986
1  0.610154  0.000000  1.000000  1.000000
2  0.329499  1.000000  0.875624  0.000000
3  0.000000  0.934370  0.731172  0.739260
"""
df_norm2=df.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x)))
print(df_norm2)
"""
          0         1         2         3
0  1.000000  0.823413  0.000000  0.759986
1  0.610154  0.000000  1.000000  1.000000
2  0.329499  1.000000  0.875624  0.000000
3  0.000000  0.934370  0.731172  0.739260
"""

####2、Z-score标准化方法

import numpy as np
import pandas as pd

np.random.seed(1)
df = pd.DataFrame(np.random.randn(4, 4) * 4 + 3)
print(df)
"""
          0         1         2         3
0  9.497381  0.552974  0.887313 -1.291874
1  6.461631 -6.206155  9.979247 -0.044828
2  4.276156  2.002518  8.848432 -5.240563
3  1.710331  1.463783  7.535078 -1.399565
"""
df_norm = (df - df.mean()) / (df.std())
print(df_norm)
"""
          0         1         2         3
0  1.213741  0.287871 -1.454237  0.312166
1  0.295115 -1.481492  0.777218  0.866440
2 -0.366215  0.667324  0.499679 -1.442906
3 -1.142640  0.526297  0.177340  0.264301
"""

df_norm2 = df.apply(lambda x: (x - np.mean(x)) / (np.std(x)))
print(df_norm2)
"""
         0         1         2         3
0  1.401507  0.332405 -1.679208  0.360458
1  0.340769 -1.710680  0.897454  1.000479
2 -0.422869  0.770560  0.576980 -1.666125
3 -1.319407  0.607716  0.204774  0.305188
"""

比较好奇为啥上面df.std()和np.std()算出来的值不一样,估计哪里有点不一样的地方,还需要研究研究。下面做了一个简单的实验,不知道df.std()具体是怎么算的。

import numpy as np
import pandas as pd

data = [(1, 2), (3, 4)]
df = pd.DataFrame(data)
print(df)
"""
   0  1
0  1  2
1  3  4
"""
df_std1 = df.std(axis=0)
print(df_std1)
"""
0    1.414214
1    1.414214
"""
df_std2 = df.apply(lambda x: np.std(x), axis=0)
print(df_std2)
"""
0    1.0
1    1.0
"""

经过后续学习这篇帖子找到了答案:
https://stackoverflow.com/questions/24984178/different-std-in-pandas-vs-numpy

import numpy as np
import pandas as pd

data = [(1, 2), (3, 4)]
df = pd.DataFrame(data)
print(df)
"""
   0  1
0  1  2
1  3  4
"""
df_std1 = df.std(axis=0)
print(df_std1)
"""
0    1.414214
1    1.414214
"""
df_std2 = df.apply(lambda x: np.std(x,ddof=1), axis=0)
print(df_std2)
"""
0    1.414214
1    1.414214
"""

ddof : int, optional
Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero.
这个是numpy对ddof的解释。

简单点说np.std()计算的是标准差,df.std()计算的是标准差的无偏估计

参考资料
1、https://stackoverflow.com/questions/12525722/normalize-data-in-pandas
2、https://stackoverflow.com/questions/26414913/normalize-columns-of-pandas-data-frame
3、https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation

欢迎加入python学习交流群 667279387

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页