【AI】让deepseek_r1 671b输出draw.io可导入的xml图表数据

1. 画一张基于Spring Cloud的通用技术架构图,部署环境仍然腾讯云

2. 请提供可导入到draw.io的xml数据格式

3. value内的值必须做htmlencode操作,比如value="嘻嘻嘻<div>(fds)</div><div>犯得上发射点</div>";

4. mxGeometry 必须带有as="geometry"属性,否则导入报错。

5. 关于value中的回车,应该采用 
 而不是 <div>

输出的xml

<mxfile host="app.diagrams.net">
    <diagram name="Spring Cloud架构-腾讯云" id="6mJhpWX3ja7n-3-5J0y3">
        <mxGraphModel dx="1642" dy="882" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0">
            <root>
                <mxCell id="0"/>
                <mxCell id="1" parent="0"/>
                
                <!-- 客户端层 -->
                <mxCell id="client" value="客户端&#xa;(Web/App)" style="shape=cloud;fontSize=12;fillColor=#ffffff;" vertex="1" parent="1">
                    <mxGeometry as="geometry" x="80" y="200" width="120" height="80"/>
                </mxCell>
                
                <!-- 腾讯云CLB -->
                <mxCell id="clb" value="腾讯云CLB&#xa;(HTTPS/WebSocket)" style="swimlane;fontSize=12;fillColor=#DAE8FC;strokeColor=#6C8EBF;" vertex="1" parent="1">
                    <mxGeometry as="geometry" x="280" y="180" width="160" height="100"/>
                </mxCell>
                
                <!-- Spring Cloud Gateway -->
                <mxCell id="gateway" value="Spring Cloud Gateway&#xa;(API网关集群)" style="rounded=1;whiteSpace=wrap;fontSize=12;fillColor=#FFF2CC;strokeColor=#D6B656;" vertex="1" parent="1">
                    <mxGeometry as="geometry" x="500" y="100" width="150" height="80"/>
                </mxCell>
                
                <!-- 微服务层 -->
                <mxCell id="service1" value="用户服务&#xa;(Spring Boot)" style="shape=cylinder;whiteSpace=wrap;fontSize=12;fillColor=#D5E8D4;strokeColor=#82B366;" vertex="1" parent="1">
                    <mxGeometry as="geometry" x="720" y="40" width="120" height="60"/>
                </mxCell>
                <mxCell id="service2" value="订单服务&#xa;(Spring Boot)" style="shape=cylinder;whiteSpace=wrap;fontSize=12;fillColor=#D5E8D4;strokeColor=#82B366;" vertex="1" parent="1">
                    <mxGeometry as="geometry" x="720" y="140" width="120" height="60"/>
                </mxCell>
                
                <!-- 中间件层 -->
                <mxCell id="nacos" value="Nacos集群&#xa;(服务注册中心)" style="shape=parallelogram;whiteSpace=wrap;fontSize=12;fillColor=#E1D5E7;strokeColor=#9673A6;" vertex="1" parent="1">
                    <mxGeometry as="geometry" x="500" y="240" width="150" height="60"/>
                </mxCell>
                <mxCell id="redis" value="TencentDB for Redis&#xa;(缓存/分布式锁)" style="shape=cylinder3;whiteSpace=wrap;fontSize=12;fillColor=#FFE6CC;strokeColor=#D79B01;" vertex="1" parent="1">
                    <mxGeometry as="geometry" x="900" y="40" width="140" height="80"/>
                </mxCell>
                <mxCell id="mysql" value="TencentDB for MySQL&#xa;(主从架构)" style="shape=cylinder3;whiteSpace=wrap;fontSize=12;fillColor=#D5E8D4;strokeColor=#82B366;" vertex="1" parent="1">
                    <mxGeometry as="geometry" x="900" y="160" width="140" height="80"/>
                </mxCell>
                
                <!-- 监控层 -->
                <mxCell id="monitor" value="监控告警体系&#xa;(Prometheus+Grafana)" style="shape=document;whiteSpace=wrap;fontSize=12;fillColor=#f8cecc;strokeColor=#b85450;" vertex="1" parent="1">
                    <mxGeometry as="geometry" x="500" y="340" width="150" height="60"/>
                </mxCell>
                
                <!-- 连接线 -->
                <mxCell id="e1" value="" style="endArrow=classic;html=1;" edge="1" parent="1" source="client" target="clb">
                    <mxGeometry as="geometry"/>
                </mxCell>
                <mxCell id="e2" value="负载均衡" style="endArrow=classic;html=1;labelBackgroundColor=#ffffff;" edge="1" parent="1" source="clb" target="gateway">
                    <mxGeometry as="geometry"/>
                </mxCell>
                <mxCell id="e3" value="服务发现" style="endArrow=classic;html=1;dashed=1;labelBackgroundColor=#ffffff;" edge="1" parent="1" source="gateway" target="nacos">
                    <mxGeometry as="geometry"/>
                </mxCell>
                <mxCell id="e4" value="API路由" style="endArrow=classic;html=1;labelBackgroundColor=#ffffff;" edge="1" parent="1" source="gateway" target="service1">
                    <mxGeometry as="geometry"/>
                </mxCell>
                <mxCell id="e5" value="" style="endArrow=classic;html=1;" edge="1" parent="1" source="gateway" target="service2">
                    <mxGeometry as="geometry"/>
                </mxCell>
                <mxCell id="e6" value="数据访问" style="endArrow=classic;html=1;labelBackgroundColor=#ffffff;" edge="1" parent="1" source="service1" target="mysql">
                    <mxGeometry as="geometry"/>
                </mxCell>
                <mxCell id="e7" value="缓存读写" style="endArrow=classic;html=1;labelBackgroundColor=#ffffff;" edge="1" parent="1" source="service2" target="redis">
                    <mxGeometry as="geometry"/>
                </mxCell>
                <mxCell id="e8" value="指标采集" style="endArrow=classic;html=1;dashed=1;labelBackgroundColor=#ffffff;" edge="1" parent="1" source="service1" target="monitor">
                    <mxGeometry as="geometry"/>
                </mxCell>
            </mxGraphModel>
        </diagram>
    </mxfile>

导入到draw.io

### 如何部署 DeepSeek-R1 671B 模型 对于大型模型如DeepSeek-R1 671B,其部署过程涉及多个方面,包括但不限于环境准备、资源分配以及具体的技术实现细节。鉴于此规模的模型通常需要强大的硬件支持和优化措施来确保性能。 #### 环境配置与依赖安装 为了成功部署DeepSeek-R1 671B模型,首先需创建适合该模型运行的操作系统环境并安装必要的软件包。这可能涉及到设置Python虚拟环境,并通过pip或其他工具安装所需的库文件[^1]。 ```bash conda create --name deepseek_env python=3.9 conda activate deepseek_env pip install torch transformers accelerate bitsandbytes ``` #### 下载预训练模型 利用Hugging Face Hub可以方便地获取官方发布的DeepSeek系列模型权重。针对具体的671B版本,操作方式如下所示: ```python from huggingface_hub import snapshot_download model_id = "deepseek-ai/DeepSeek-R1-Distill-Llama-671B" local_dir = "./models/deepseek-r1-distilled-llama-671b" snapshot_download(repo_id=model_id, local_files_only=False, cache_dir=None, local_dir=local_dir) ``` 上述代码片段展示了如何指定目标存储路径`local_dir`并将远程仓库中的数据同步到本地磁盘上。 #### 加载与推理服务化 完成模型下载之后,则可进一步编写用于加载模型实例并向用户提供API接口的服务端逻辑。考虑到内存占用等因素,在实际应用中建议采用分布式计算框架或GPU集群加速运算效率。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(local_dir) model = AutoModelForCausalLM.from_pretrained(local_dir) device = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(device).eval() ``` 以上脚本实现了基于PyTorch平台上的模型初始化工作,并将其迁移到可用设备(CPU/GPU)之上以便后续执行预测任务。 #### 性能调优策略 由于此类超大规模语言模型对算力需求极高,因此还需要考虑一系列针对性强的方法来进行性能调整,比如量化技术的应用、混合精度训练等手段都可以有效降低资源消耗的同时保持较高的准确性水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值