最近在网上找了一个数据集,原始数据为txt文件,就想着利用pandas将txt文件转为csv文件,然后给csv文件加上列名之后统计第二列中各个值出现的次数
首先是将txt文件转为csv文件,代码如下:
import csv out = open('file_list.csv','w',newline='') csv_writer=csv.writer(out,dialect='excel') f = open('file_list.txt',"r",encoding='utf-8') for line in f.readlines(): line=line.replace(',','\t') list=line.split() csv_writer.writerow(list)
此时,在读取txt文件时,一定要加上encoding='utf-8',要不然就会报错,属于编码格式错误。
运行,输出成功,但是csv文件中没有列名,于是利用pandas给csv文件加入列名,代码如下:
import pandas as pd df = pd.read_csv('file_list.csv',header=None,encoding='gb18030') df.columns=["id","key","html_id","html"] df.to_csv('file.csv',encoding='utf-8',index=False)
此时的encoding要赋值为gb18030,也是编码格式的问题,不加的话会报错:error:UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa1 in position 0
运行成功之后file.csv文件已经加入了列名,接着是统计第二列也就是key中各个值出现的次数,发现有三个值,为n、p、d三个,统计数量,代码如下:
import pandas as pd list_data=[] df =pd.read_csv('file.csv',encoding='utf-8') df2 = df.key.value_counts() print(df2)
最后可以统计出来n、p、d三个值的数量也就是次数。此处也要注意编码格式的错误。如果想清楚这些编码格式,可以去网上搜索了解,很容易搜到。