rcnn总结

1.rcnn算法流程
1.一整图像生成1K~2K个候选区域(使用Selective Search方法)
2.对每个候选框区域使用深度网络提取特征
3.特征送入每一类的SVM分类器,判别是否属于该类
4.使用回归器精细修正候选框位置
详细过程参考链接http://t.csdn.cn/vGLPe
2.数据训练
rcnn训练数据需要三个步骤单独训练,训练步骤为
(1) CNN fine-tuning,
(2) detector SVM training
(3)bounding-box regressor training
3.为什么需要svm
fine-tuning时用的正样本是IOU>0.5的候选框,和groundtruth有偏差,对训练结果会有影响,而训练svm用的正样本就是groundtruth。
4.为什么用svm不用softmax
svm的性能比softmax好,主要由于下面几个原因,微调中使用的正例的定义不强调精确定位,并且 softmax 分类器是在随机采样的负例上训练的,而svm训练用的是hard negatives。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值