分数规划问题

概念及解法

  引用自OI Wiki

分数规划用来求一个分式的极值。
形象一点就是,给出 a i a_i ai b i b_i bi,求一组 w i ∈ { 0 , 1 } w_i\in\{0,1\} wi{0,1},最小化或最大化 ∑ i = 1 n a i × w i ∑ i = 1 n b i × w i \displaystyle\frac{\sum\limits_{i=1}^na_i\times w_i}{\sum\limits_{i=1}^nb_i\times w_i} i=1nbi×wii=1nai×wi
另外一种描述:每种物品有两个权值 a 和 b,选出若干个物品使得 ∑ a ∑ b \displaystyle\frac{\sum a}{\sum b} ba 最小/最大。
一般分数规划问题还会有一些奇怪的限制,比如『分母至少为 W』。

分数规划问题的通用解法是二分

假设要求最大值。二分一个答案 mid,然后推式子(为了方便少写了上下界):
               ∑ a i × w i ∑ b i × w i > m i d ⟹ ∑ a i × w i − m i d × ∑ b i ⋅ w i > 0 ⟹ ∑ w i × ( a i − m i d × b i ) > 0 \displaystyle \begin{aligned} &\frac{\sum a_i\times w_i}{\sum b_i\times w_i}>mid\\ \Longrightarrow&\sum a_i\times w_i-mid\times \sum b_i\cdot w_i>0\\ \Longrightarrow&\sum w_i\times(a_i-mid\times b_i)>0 \end{aligned} bi×wiai×wi>midai×wimid×biwi>0wi×(aimid×bi)>0
那么只要求出不等号左边的式子的最大值就行了。如果最大值比 0 要大,说明 mid 是可行的,否则不可行。
求最小值的方法和求最大值的方法类似。

一些题目

  UVa12164/LA4412 The Great Game
  这是一道综合了概率(马尔可夫链)、二分、dp的好题,也是我碰到的首个分数规划题目。

  UVa11090 Going in Cycle!!
  给定一个n个点m条边的加权有向图,求平均权值最小的回路。输入第一行为数据组数T。每组数据第一行为图的点数n和边数m(n≤50)。以下m行每行3个整数u, v, w,表示有一条从u到v的有向边,权值为w。输入没有自环。对于每组数据,输出最小平均值。如果无解,输出“No cycle found.”。

#include <iostream>
#include <iomanip>
#include <cstring>
using namespace std;

#define INF 20000000
#define N 52
struct {int v; double w;} g[N][N]; int w[N][N], c[N], f[N], cnt[N], q[N*N], m, n, kase = 0; double d[N];

bool cycle() {
    int head = 0, tail = n;
    for (int i=1; i<=n; ++i) cnt[i] = d[i] = 0, f[i] = 1, q[i-1] = i;
    while (head < tail) {
        int u = q[head++]; f[u] = 0;
        for (int i=0; i<c[u]; ++i) {
            int v = g[u][i].v; double d1 = d[u] + g[u][i].w;
            if (d[v] > d1) {
                d[v] = d1;
                if (++cnt[v] >= n) return true;
                if (!f[v]) q[tail++] = v, f[v] = 1;
            }
        }
    }
    return false;
}

bool cycle(double x) {
    for (int u=1; u<=n; ++u) for (int i=0; i<c[u]; ++i) g[u][i].w -= x;
    bool r = cycle();
    for (int u=1; u<=n; ++u) for (int i=0; i<c[u]; ++i) g[u][i].w += x;
    return r;
}

void solve() {
    memset(w, 31, sizeof(w)); memset(c, 0, sizeof(c));
    cin >> n >> m;
    int x = 0;
    while (m--) {
        int u, v, z; cin >> u >> v >> z; x = max(x, z);
        if (w[u][v] > INF) g[u][c[u]++].v = v;
        if (z < w[u][v]) w[u][v] = z;
    }
    for (int u=1; u<=n; ++u) for (int i=0; i<c[u]; ++i) g[u][i].w = w[u][g[u][i].v];
    if (cycle(x + 1e-3))  {
        double l = 0., r = x;
        while (l + 1e-3 < r) {
            double m = (l+r) / 2.;
            cycle(m) ? r = m : l = m;
        }
        cout << "Case #" << ++kase << ": " << l << endl;
    } else cout << "Case #" << ++kase << ": No cycle found." << endl;
}

int main() {
    cout << fixed << setprecision(2);
    int t; cin >> t;
    while (t--) solve();
    return 0;
}

  洛谷 P3705 [SDOI2017] 新生舞会

#include <iostream>
#include <iomanip>
#include <cstring>
using namespace std;

#define INF 1e30
#define N 102
double slack[N], lx[N], ly[N], m; int a[N][N], b[N][N], pre[N], p[N], vis[N], n, clk;

void bfs(int u) {
    for (int i=1; i<=n; ++i) pre[i] = 0, slack[i] = INF;
    int y = 0, yy = 0; p[0] = u;
    do {
        double d = INF; int x = p[y]; vis[y] = clk;
        for (int i=1; i<=n; ++i) if (vis[i] != clk) {
            double w = lx[x] + ly[i] - a[x][i] + m*b[x][i];
            if (slack[i] > w) slack[i] = w, pre[i] = y;
            if (slack[i] < d) d = slack[i], yy = i;
        }
        for (int i=0; i<=n; ++i) vis[i] == clk ? (lx[p[i]]-=d, ly[i] += d) : slack[i] -= d;
        y = yy;
    } while (p[y]);
    while (y) p[y] = p[pre[y]], y = pre[y];
}

double km() {
    lx[0] = ly[0] = 0.; vis[0] = 0;
    for (int i=1; i<=n; ++i) {
        p[i] = 0; lx[i] = -INF; ly[i] = 0.; vis[i] = 0;
        for (int j=1; j<=n; ++j) lx[i] = max(lx[i], a[i][j] - m*b[i][j]);
    }
    for (int i=1; i<=n; ++i) bfs(clk = i);
    double cc = 0.;
    for (int i=1; i<=n; ++i) cc += a[p[i]][i] - m*b[p[i]][i];
    return cc;
}

double solve() {
    for (int i=1; i<=n; ++i) for (int j=1; j<=n; ++j) cin >> a[i][j];
    for (int i=1; i<=n; ++i) for (int j=1; j<=n; ++j) cin >> b[i][j];
    double l = 0., r = 1e4, eps = 1e-8;
    while (l+eps <= r) {
        m = .5*(l+r);
        km() < 0. ? r = m-eps : l = m+eps; 
    }
    return r;
}

int main() {
    ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    cout << fixed << setprecision(6);
    while (cin >> n) cout << solve() << endl;
    return 0;
}
  • 15
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值