TensorFlow1.x/2.x配置动态显存方法

配置动态显存的必要性

TensorFlow默认是占用全部的显存,不过比较BUG的是,就算模型用不了全部的显存,TensorFlow也会尽可能地多申请显存,可能是出于性能方面的考虑,并且如果满足不了它就会罢工。。比如我一块6GB显存的1660Ti或者RTX 2060,运行YOLOv4的推理程序如果不配置显存动态增长就会报错,不管是TensorFlow 1.x还是2.x的版本我都遇到了这样的问题。明明用darknet运行啥事都没有,就这货会搞事情。。下面简单记录下TensorFlow 1.x / 2.x版本的配置动态显存增长的方法。

配置方法

对于TensorFlow 1.x版本的用户,配置的方法如下:

import tensorflow as tf

config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth &#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值