配置动态显存的必要性
TensorFlow默认是占用全部的显存,不过比较BUG的是,就算模型用不了全部的显存,TensorFlow也会尽可能地多申请显存,可能是出于性能方面的考虑,并且如果满足不了它就会罢工。。比如我一块6GB显存的1660Ti或者RTX 2060,运行YOLOv4的推理程序如果不配置显存动态增长就会报错,不管是TensorFlow 1.x还是2.x的版本我都遇到了这样的问题。明明用darknet运行啥事都没有,就这货会搞事情。。下面简单记录下TensorFlow 1.x / 2.x版本的配置动态显存增长的方法。
配置方法
对于TensorFlow 1.x版本的用户,配置的方法如下:
import tensorflow as tf
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth &#