Python环境下OpenCV视频流的多线程处理方式

前言

最近在功能性测试的过程中,需要在Python环境下用OpenCV读取网络摄像头的视频流,接着用目标检测器进行视屏帧的后续处理。在测试过程中发现如果是单线程的情况,会出现比较严重的时延,如果目标检测模型稍微大一点,像YOLOv4这类的,那么情况更加严重。
后面考虑到演示效果,从单线程改为了多线程,即单独用一个线程实时捕获视频帧,主线程在需要时从子线程拷贝最近的帧使用即可。通过这样的修改,不仅时延基本消失,整个流程的实时性也有相对的提升,可以说是非常实用的技巧。

Python多线程编程

使用Python进行多线程编程是较为简单的,Python的threading模块封装了相关的操作,通过编写功能类继承threading.Thread即可实现自己的逻辑。简单的代码示例如下所示:

class myThread(threading.Thread):
    def __init__(self, name=None):
        super(myThread, self).__init__(name=name)

    def run(self):
        print('=> Thread %s is running ...' % self.name)

thread = myThread()
thread.start()
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值