数据探索与数据清洗

本文主要探讨了数据探索的重要性,包括数据质量分析和特征分析,并详细介绍了数据清洗的步骤,如缺失值和异常值处理。在缺失值处理中,提到了多种插补方法,如均值、中位数和众数等。对于异常值,建议使用中位数进行替换,并通过散点图来识别和处理异常点。
摘要由CSDN通过智能技术生成

一 数据探索

数据探索的目的是及早的发现数据的一些简单规律或特征,数据清洗的目的是留下可靠的数据,避免脏数据的干扰.

数据探索的核心是:

  1. 数据质量分析(跟数据清洗密切联系)
  2. 数据特征分析(分布,对比,周期性,相关性,常见统计量等)

二 数据清洗

数据清洗可以按如下步骤进行

  1. 缺失值处理(通过describe与len发现,通过0数据发现)
  2. 异常值处理(通过散点图发现)
  3. 异常值处理(通过散点图发现)

缺失值,处理方式为(删除,插补,不处理);

插补的方式主要有:均值插补,中位数插补,众数插补,固定值插补,最近数据插补,回归插补,拉格朗日插值,牛顿插值法,分段插值等等.

遇到异常值,一般处理方式为视为缺失值,删除,修补(平均数,中位数等),不处理.

插补法处理(中位数)

# coding=utf-8
import pandas as pd
import numpy as np
data = pd.read_csv("taobao.csv")
print(data.describe())

结果为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值