poj 1845 Sumdiv (快速求幂+同余或 乘法逆元)



大致题意:

求A^B的所有约数(即因子)之和,并对其取模 9901再输出。

 

解题思路:

要求有较强 数学思维 的题

应用定理主要有三个:

要求有较强 数学思维 的题

应用定理主要有三个:

(1)   整数的唯一分解定理:

      任意正整数都有且只有一种方式写出其素因子的乘积表达式。

      A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数

(2)   约数和公式:

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

有A的所有因子之和为

    S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

(3)   同余模公式:

(a+b)%m=(a%m+b%m)%m

(a*b)%m=(a%m*b%m)%m

 

有了上面的数学基础,那么本题解法就很简单了:

1: 对A进行素因子分解

分解A的方法:

A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;

当A%2!=0时,则A对下一个连续素数3不断取模...

以此类推,直到A==1为止。

 

注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。

 

最后得到A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn.
      故 A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);


2:A^B的所有约数之和为:

     sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].


3: 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n  或利用等比公式求和,但求和的话因为要除以(1-pi),所以可以用(1-pi)关于 mod的逆元

(1)若n为奇数,一共有偶数项,则:
      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
      = (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))

上式红色加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。

 

(2)若n为偶数,一共有奇数项,则:
      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
      = (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);

   上式红色加粗的前半部分恰好就是原式的一半,依然递归求解

 

4:反复平方法计算幂次式p^n

   这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE。

   以p=2,n=8为例

   常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2

   这样做的要做8次乘法

 

   而反复平方法则不同,

   定义幂sq=1,再检查n是否大于0,

While,循环过程若发现n为奇数,则把此时的p值乘到sq

{

   n=8>0 ,把p自乘一次, p=p*p=4     ,n取半 n=4

   n=4>0 ,再把p自乘一次, p=p*p=16   ,n取半 n=2

n=2>0 ,再把p自乘一次, p=p*p=256  ,n取半 n=1,sq=sq*p

n=1>0 ,再把p自乘一次, p=p*p=256^2  ,n取半 n=0,弹出循环

}

则sq=256就是所求,显然反复平方法只做了3次乘法


递归二分求等比数列

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;

#define lint __int64
#define MAXN 100000
#define M 9901
struct Factor
{
    lint base, exp;
};
Factor f[MAXN];
lint fn;
lint p[MAXN], a[MAXN], pn;

void prime ()
{
    int i, j;
    pn = 0;
    memset(a,0,sizeof(a));
    for ( i = 2; i < MAXN; i++ )
    {
        if ( !a[i] ) p[pn++] = i;
        for ( j = 0; j < pn && i * p[j] < MAXN && (p[j] <= a[i] || a[i] == 0); j++ )
            a[i*p[j]] = p[j];
    }
}

void Factorization ( int num )
{
    fn = 0;
    for ( int i = 0; i < pn && p[i] <= num; i++ )
    {
        if ( num % p[i] ) continue;
        f[++fn].base = p[i];
        f[fn].exp = 0;
        while ( num % p[i] == 0 )
        {
            f[fn].exp++;
            num /= p[i];
        }
    }
    if ( num != 1 )
    {
        f[++fn].base = num;
        f[fn].exp = 1;
    }
}

int mod_exp ( int a, lint b )
{
    int ret = 1;
    a = a % M;
    while ( b >= 1 )
    {
        if ( b & 1 ) ret = ret * a % M;
        a = a * a % M;
        b >>= 1;
    }
    return ret;
}

int sum_exp ( int p, lint exp )
{
    if ( exp == 0 ) return 1;
    lint tmp1, tmp2, mid = exp / 2;
    if ( exp & 1 )
    {
        tmp1 = sum_exp (p, mid);
        tmp2 = mod_exp (p, mid + 1);
        return (tmp1+tmp2*tmp1) % M;
    }
    else
    {
        tmp1 = sum_exp (p, mid-1);
        tmp2 = mod_exp (p, mid);
        return (tmp1 + tmp2 + p*tmp2*tmp1) % M;
    }
}

int main()
{
    prime();
    int A, B, ret = 1;
    scanf("%d%d",&A,&B);
    if ( A == 0 )
    {
        printf("0\n");
        return 0;
    }
    if ( B == 0 || A == 1 )
    {
        printf("1\n");
        return 0;
    }
    Factorization ( A );
    for ( int i = 1; i <= fn; i++ )
        ret = ret * sum_exp(f[i].base, f[i].exp*B) % M;
    printf("%d\n",ret);
}



用乘法逆元 


#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define MOD 9901
// 9901是一个素数 
using namespace std;

int A, B; // 计算A^B的所有因子的和 
int num[50], ex[50], idx; // 记录所有的因子和指数

void deal(int x) {
    idx = -1;
    for (int i = 2; i <= (int)sqrt(double (x)); ++i) {
        if (x % i == 0) {
            ++idx;
            num[idx] = i;
            ex[idx] = 0;
            while (x % i == 0) {
                ++ex[idx];
                x /= i;
            }
        }
    }
    if (x != 1) {
        ++idx;
        num[idx] = x;
        ex[idx] = 1;
    } // 分解完成
}

/*
A * x = 1 mod B;
A * x - B * y = 1;
要求1必须是gcd(A, B)的倍数,由于9901是一个素数,因此只有当A==9901是不符合要求的
*/

int exgcd(int a, int b,int &x, int &y) { 
    if (b == 0) {
        x = 1, y = 0;
        return a;
    }
    int ret = exgcd(b, a % b, x, y);
    int t = x;
    x = y;
    y = t - a/b*y;
    return ret;
}

int getinv(int v) {
    v %= MOD;
    int a = v, b = MOD, x, y;
    exgcd(a, b, x, y);
    x = (x % MOD + MOD) % MOD;
    return x;
}

int _pow(int a, int b) {
    int ret = 1;
    a %= MOD;
    while (b) {
        if (b & 1) {
            ret *= a;
            ret %= MOD;
        }
        b >>= 1;
        a *= a;
        a %= MOD;
    }
    return ret;
}
// 1073741824 
// 等比公式是 (num[i]^exp[i])^B = num[i]^exp[i]*B
// 其因子和为num[i]^0 + num[i]^1 + ...num[i]^exp[i]*B
// 化简之后就是 (num[i]^(exp[i]*B+1)-1)/(num[i]-1)

int main() {
    int ret;
    while (scanf("%d %d", &A, &B) == 2) {
        ret = 1;
        deal(A); // 对A进行分解
        for (int i = 0; i <= idx; ++i) {
            if (num[i] % MOD == 1) { // 这里要进行一下特殊处理,不然就直接去就0的逆元了 
                ret *= (ex[i]*B+1)%MOD;
                ret %= MOD;
            } 
            else {
                ret *= ((_pow(num[i]%MOD, ex[i]*B+1)-1+MOD)%MOD*getinv(num[i]-1))%MOD;
                ret %= MOD;
            }
        }
        printf("%d\n", ret);
    }
    return 0;    
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值