基于Newton牛顿法的一个基本例题

本文详细讲解了如何使用牛顿迭代法求解给定方程在1.5附近的精确根,要求误差小于10^-5,并强调了取绝对值的重要性。给出了程序运行示例。
摘要由CSDN通过智能技术生成

用牛顿迭代法求方程2x^3-4x^2+3x-6=0在1.5附近的根。误差小于10^-5(即1e-5)。
**输出格式要求:"方程的根=%6.2f\n"
程序的运行示例如下:
方程的根=  xxx
1详解版

注:delta要取绝对值才可以得到正确的值。

2.简单版

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值