给定一个容量为 W 的背包和 n 件物品,每件物品有自己的重量 w 和价值 v。目标是找出放入背包中的物品子集,使得总重量不超过 W,并且总价值最大化。
解题思路:
可以得到状态转移方程:
- 如果第
i
件物品的重量w[i]
大于背包容量j
,则 f[i][j] = f[i-1][j]
(不选择第i
件物品) - 否则,
f[i][j] = max(f[i-1][j], f[i-1][j - w[i]] + v[i])
(选择或不选择第i
件物品)
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1005;
int w[MAXN]; // 重量
int v[MAXN]; // 价值
int f[MAXN][MAXN]; // f[i][j], 不超过j体积下前i个物品的最大价值
int main()
{
int n, m;
cin >> n >> m;
for(int i = 1; i <= n; i++)
cin >> w[i] >> v[i];
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
// 当前背包容量装不进第i个物品,则价值等于前i-1个物品
if(j < w[i])
f[i][j] = f[i - 1][j];
// 能装,需进行决策是否选择第i个物品
else
f[i][j] = max(f[i - 1][j], f[i - 1][j - w[i]] + v[i]);
}
cout << f[n][m] << endl;
return 0;
}
好,来到我们的进阶版本-->一维数组
一维数组版本和二维数组版本本质上是相同的算法,只是在空间复杂度上进行了优化。
既然二维数组中第i行的的f[i][j]都上一行第i-1行更新得来的,那么我们让f[j]滚动跟新同时保存两行的信息,当然每次更新完成后仅保存第i行的信息。因此空间复杂度可以降低到O(W)。
- f[j] 表示前i个物品的总体积不超过j的所有方案的最大价值。
- 枚举背包容量时必须逆序(从W开始)
- (关键)逆序是为了保证f[j]更新的信息来自第i-1行。二维数组中第i行和第i-1行f[i][j]和f[i-1][j]是独立的不存在互相干扰的情况,而一维数组中更新第i行前f[j]保存的是前i-1件物品不超过j 的最大价值,更新后成了第i件物品不超过j的最大价值,因此更新过程中会出现干扰。我们用前一行的小体积去更新第i行的大体积,所有要逆序更新,保证跟新的信息来自前一行。
for(int i = 1; i <= n; i++)
for(int j = W; j >= 1; j--)
{
// 当前背包容量装不进第i个物品,则价值等于前i-1个物品
if(j < w[i])
f[j] = f[j];
// 能装,需进行决策是否选择第i个物品
else
f[j] = max(f[j], f[j - w[i]] + v[i]);
}
可以看到如果不更新那么会出现f[j]=f[j]的搞笑代码。所以将j从W逆序更新到w[i]就可以保证每次都能被更新,略过不更新的f[j]=f[j]。
for(int i = 1; i <= n; i++)
for(int j = W; j >= w[i]; j--)
f[j] = max(f[j], f[j - w[i]] + v[i]);