【动态规划】背包问题-01背包详解(二维数组理解&一维数组优化)

7 篇文章 0 订阅

        背包问题有部分背包问题、01背包问题、完全背包问题、多重背包问题以及混合背包问题等几种,其中01背包是最为基础的,理解全了01背包问题,其他的背包问题都迎刃而解。

问题描述

N物品和一个容量为M的背包,设i物品的费用(体积\重量)w[i]价值c[i]。求解如何选择物品可以使得费用(体积\重量)总和不超过背包容量V,且价值最大。

01背包的特点:每种物品只有一件,可以选择放不放

01背包状态分析

首先复习一下动态规划的核心思想:将每个状态的最优值记录下来

状态设置:f[i][v]表示i物品放入一个容量为v的背包所获得的最大价值

只需考虑背包容量为v时,物品的放置情况如下(先理思路,图在后面,要耐心看哦):

(1)第i物品的策略(放或不放)

放的状态:就是i-1物品在背包容量v-w[i]时的最优解+当前物品的价值c[i],也就是f[i-1][v-w[i]]+c[i]

不放的状态:就是i-1物品在背包容量同样为v时的最优解,也就是f[i-1][v]

(2)另一种情况:i件物品的费用大于背包容量,根本放不进状态为:f[i-1][v]

01背包状态转移方程

如果第i件物品放入背包中(w[i] <= v)则状态转移方程为:

f[i][v] = max(f[i-1][v], f[i-1][v - w[i] + c[i])

如果第i件物品不能放入背包中(w[i] > v)则状态转移方程为:

f[i][v] = f[i-1][v]

最终的最优解就是f[N][M] (N物品和一个容量为M的背包)

01背包基本思路

阶段数:N件物品的数目,和背包容量M共同确定的

状态:f[i][v]表示i物品(全部物品或者部分物品)放入一个容量为v的背包可以获得的最大价值

边界条件:f[0][v]=0f[i][0]=0没有物品放入最大价值为0

注意这里的v是会变化的v=(0...M)

01背包动态规划基本思路

举一个例子我们一起来分析下:

        假设有分别a、b、c的三件物品,费用分别是2、3、4,价值分别是1、3、5现在给你承重为8的背包,如何让背包里的物品具有最大价值。

未放入物品时背包的最大价值为0​​​​

首先放a物品:

v=1时放a物品的最优解

v=2时放物品a的最优解

所以同理可以得到在背包容量从0~8的时候,物品a放入背包的剩余情况最优解。

 接着放物品b,和放a物品差不多。

 需要注意的是,当背包容量为3的时候:不放物品b的最大价值为f[i][v] = f[i-1][v] = 1;但是放入b的价值为f[i][v] = f[i-1][v-w[i]] + c[i] = 3,所以此时最大价值为3。

当背包容量为8时,放入b后,此时f[2][8]的最大价值为4。

接着继续放物品c。

最后得到在背包容量为8的时候,最大价值为8.

01背包模板题

一个旅行者有一个最多能装M公斤的背包,现在有N件物品,它们的重量分别是W1,W2,......Wn,它们的价值分别为C1C2......Cn求旅行者能获得最大总价值的物品?

输入格式:

第一行:两个整数,M背包容量M<=200,N物品数量N<=30

第二行至N+1行:每行两个整数Wi, Ci表示每个物品的重量和价值

输出格式:

仅一行,一个数表示最大总价值

输入样例:

10  4

2    1

3    3

4    5

7    9

输出样例:

12

模板题解析

1. 确定阶段数

就是N件物品的数目,和背包容量M共同确定的

2. 确定状态

f[i][v]表示前i种物品(全部物品或者部分物品)放入一个容量为v的背包可以获得的最大价值

3. 确定状态转移方程和边界

放的进:f[i][v] = max{f[i-1][v], f[i-1][v-w[i]] + c[i]}

放不进:f[i][v]=f[i-1][v]

边界条件:f[0][v] = 0 , f[i][0] = 0

4. 程序实现

#include <iostream>
#include <algorithm>
using namespace std;

int main(){
    int M, N, w[205], c[205];
    int f[205][205]={};

    cin>>M>>N;

    for(int i = 1; i <= N; i++)
        cin>>w[i]>>c[i];

    for(int i = 1;i <= N; i++){
        for(int v = 1;v <= M; v++){
	        if(v >= w[i]){
                //放的进的时候,比较放与不放,选择最优解
	            f[i][v] = max(f[i-1][v], f[i-1][v-w[i]] + c[i]);  
	        }else{
	            f[i][v]=f[i-1][v];    //物品费用大于背包体积
	        } 
        }
    }
    cout<<f[N][M];   //最终解
    return 0;
}
    

01背包改进解法思路

根据f[v]=max{f[v],f[v-w[i]]+c[i]}i物品可以发现只与前i-1物品的状态有关

放入a物品后,更新一维数组,见下图。

放入b物品后,更新一维数组,见下图。

放入c物品后,更新一维数组,见下图。

可得状态转移方程: f[v]=max(f[v],f[v-w[i]]+c[i])

注意:v值越小越迟被覆盖,由于要被调用运算。即按v倒序运算

01背包动态规划改进解法分析(一维数组)

1、确定阶段数

就是N 件物品的数目,和背包容量 V共同确定

2、确定状态

f[v]表示i物品(全部物品或者部分物品)放入一个容量为v的背包可以获得的最大价值

3、确定状态转移方程和边界

f[v]=max(f[v],f[v-w[i]]+c[i])

边界条件 f[0] = 0

4、程序实现

#include <iostream>
#include <algorithm>

using namespace std;

int main(){
    int N,M,w[105],c[105],f[105]={};   
    //N物品数量 V背包容量 w[k]c[k]存储物品的重量和价值,f[k]存储不同容量的最优状态

    cin>>M>>N;

    for(int i=1;i<=N;i++)
        cin>>w[i]>>c[i];

    for(int i=1;i<=N;i++){
        for(int v=M;v>=1;v--){     //为什么要倒序???
            if(v>=w[i]){
                f[v]=max(f[v],f[v-w[i]]+c[i]);
            }
        }
    }

    cout<<f[M];

    return 0;
}

练习题

给大家提供一个自己搭建的HustOj,目前在逐渐加题中,有兴趣的话可以去看看,搜索自己想要的题目~

网址:http://120.26.142.136/   或者    wmast.cn

  • 9
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【ACGO】我不会C++

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值