免费馅饼
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 54156 Accepted Submission(s): 18999
Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6 5 1 4 1 6 1 7 2 7 2 8 3 0
Sample Output
4
#include <bits/stdc++.h>
using namespace std;
int dp[100001][11], cnt[100001][11];
int main(){
int n;
while(scanf("%d", &n) != EOF){
if(n == 0) return 0;
int x, t, T = 0;
memset(cnt, 0, sizeof(cnt));
for(int i = 1; i <= n; ++i){
scanf("%d %d", &x, &t);
cnt[t][x]++;
T = max(T, t);
}
for(int i = 0; i <= 10; ++i){
dp[0][i] = -1;
}
dp[0][5] = 0;
for(int i = 1; i <= T; ++i){
if(dp[i - 1][0] >= 0 || dp[i - 1][1] >= 0){
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1]) + cnt[i][0];
}
for(int j = 1; j <= 9; ++j){
if(dp[i - 1][j - 1] >= 0 || dp[i - 1][j] >= 0 || dp[i - 1][j + 1] >= 0){
dp[i][j] = max(dp[i - 1][j], max(dp[i - 1][j - 1], dp[i - 1][j + 1])) + cnt[i][j];
}
}
if(dp[i - 1][10] >= 0 || dp[i - 1][9] >= 0){
dp[i][10] = max(dp[i - 1][10], dp[i - 1][9]) + cnt[i][10];
}
}
int ans = 0;
for(int i = 0; i <= 10; ++i){
ans = max(ans, dp[T][i]);
}
printf("%d\n", ans);
}
}
/*
题意:
1e5的点,每个点某个时刻会丢下馅饼,起始点5号点,每秒可以移动1个点,只能捡到所在位置当前时刻
掉下来的馅饼,问最多可以获得多少馅饼。
思路:
由于一共就11个点,时刻一共就1e5,很容易想到状态线性dp,dp[i][j]表示第i时刻在j位置时最多可以获得多少馅饼。
那么j位置只能由上一时刻相邻位置的点移动过来,那么根据时间线性维护一下每一时刻所有位置的最大值即可。
*/