畅通工程再续
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 32093 Accepted Submission(s): 10532
Problem Description
相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
Input
输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
Output
每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.
Sample Input
2 2 10 10 20 20 3 1 1 2 2 1000 1000
Sample Output
1414.2 oh!#include <bits/stdc++.h> using namespace std; struct edge{ int from, to, val; bool operator < (const edge& x) const{ return val < x.val; } }a[11111]; int p[11111], x[111], y[111]; int findset(int x){ return p[x] == x ? x : p[x] = findset(p[x]); } int main(){ int T; scanf("%d", &T); while(T--){ int n, u, v, num; scanf("%d", &n); for(int i = 1; i <= n; ++i){ scanf("%d %d", &x[i], &y[i]); } num = 0; for(int i = 1; i <= n; ++i){ for(int j = i + 1; j <= n; ++j){ a[++num].from = i; a[num].to = j; a[num].val = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]); } } for(int i = 1; i <= n; ++i){ p[i] = i; } sort(a + 1, a + 1 + num); int tot = 1, pos = 1; double ans = 0; while(tot < n && pos <= num){ u = findset(a[pos].from); v = findset(a[pos].to); if(u != v && a[pos].val <= 1000000 && a[pos].val >= 100){ p[u] = v; tot++; ans += sqrt(a[pos].val); } pos++; } ans *= 100; if(tot < n){ printf("oh!\n"); } else{ printf("%.1f\n", ans); } } } /* 题意: 100个城市,给出它们的坐标,求最小生成树。 思路: 最小生成树裸题,并查集维护一下两点的连通性。 */