HDU-1875 畅通工程再续 (最小生成树)

畅通工程再续

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 32093    Accepted Submission(s): 10532


Problem Description
相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
 

Input
输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
 

Output
每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.
 

Sample Input
  
  
2 2 10 10 20 20 3 1 1 2 2 1000 1000
 

Sample Output
  
  
1414.2 oh!
#include <bits/stdc++.h>
using namespace std;
struct edge{
	int from, to, val;
	bool operator < (const edge& x) const{
		return val < x.val;
	}
}a[11111];
int p[11111], x[111], y[111];
int findset(int x){
	return p[x] == x ? x : p[x] = findset(p[x]);
}
int main(){
	int T;
	scanf("%d", &T);
	while(T--){
		int n, u, v, num;
		scanf("%d", &n);
		for(int i = 1; i <= n; ++i){
			scanf("%d %d", &x[i], &y[i]);
		}
		num = 0;
		for(int i = 1; i <= n; ++i){
			for(int j = i + 1; j <= n; ++j){
				a[++num].from = i;
				a[num].to = j;
				a[num].val = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
			}
		}
		for(int i = 1; i <= n; ++i){
			p[i] = i;
		}
		sort(a + 1, a + 1 + num);
		int tot = 1, pos = 1;
		double ans = 0;
		while(tot < n && pos <= num){
			u = findset(a[pos].from);
			v = findset(a[pos].to);
			if(u != v && a[pos].val <= 1000000 && a[pos].val >= 100){
				p[u] = v;
				tot++;
				ans += sqrt(a[pos].val);
			}
			pos++;
		}
		ans *= 100;
		if(tot < n){
			printf("oh!\n");
		}
		else{
			printf("%.1f\n", ans);
		}
	}
	
}

/*
题意:
100个城市,给出它们的坐标,求最小生成树。

思路:
最小生成树裸题,并查集维护一下两点的连通性。
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值