后端算法部署总结-python项目开发经验

总体

后端算法才是未来,大号模型大参数才是未来。
以前总是执着于移动端,边缘端部署。
各种寻找小模型,边缘端优化技术,支持功能少,效果也没那么好。
眼光局限了。

这真是苦涩的教训阿。
OpenAI:与其执着于各种人工优化技巧,不如相信更大的算力(更多的参数和数据)。
https://www.bilibili.com/read/cv32692627/
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

当前(2024年3月29日),算法进步是很快的,现在不行的任务功能,过一段时间可能就行了。

运行算法demo很简单,顺利的话半个小时
**但是部署没这么简单,有很多工作要做,**要了解算法相当多的细节,要嵌入到现有系统中,要处理输入输出接口化,还要考虑内存,速度,进度等的问题
基本上每个算法都是这样,全部弄下来的一两天了

比如即使是工程化已经做得十分完善的yolov8,都还要做很多工作
包括但不限于:选那个模型,耗时多少可以接受,输入图片大小控制,输出结构是怎么样的,了解了然后转换为系统可接受的形式,嵌入到当前的服务端框架里面,等等

想要完成某个功能任务,专门针对的算法没有,但是可以寻找其它通用算法来解决。
比如用sam,解决很多分割相关的任务。
用yolov8训练出来的算法检测人脸,比很多专门优化的人脸检测算法还好。

部署调试-联调经验

  • 服务器用postman调试,方面快捷得多,不要用软件,idea发送连接调试,各种问题,操作量增加,慢几倍、
  • Python comfyui调试节点,直接运行节点文件代码!不要还去跑一遍comfyui,跑网页,点击再调试
  • 端上测试用缓存好的结果就行,不要每次请求服务器再调试
  • 整体来说,涉及到多端,就是调试链路越短越好,尽可能只在一个端上充分调试好
    因为每个端都可能出问题,操作量增加很多,时间慢几倍,甚至由于高成本,最后根本做不出来,难以成功
    复杂则做不了原理,不是难做到,是直接就没了,做不到

算法端部署完了,多测试些用例,比如 一般拿测试文件夹所有图片跑一遍

耗时和优化相关

模型已经加载到CPU,启动运行模型,包括加载到GPU也会耗时,这个耗时还相当长,yolov8 100M的模型需要半秒,其它会更多
cpu线程和GPU不是同步的,当cpu的推理代码运行完了,或者说tensor已经到了步骤C,cpu的步骤可能还在B,会出现我们最后从tensor获取结果,比如加载到cpu,的时候,还需要等待相当长时间才能获取结果

显存相关

pytorh的显存复用机制

显然,我们多次运行同一段代码,
当你多次运行相同的代码段时,如果涉及的 Tensor 尺寸不变,PyTorch 通常能有效地复用先前分配的显存。这是通过内部的缓存机制实现的,其中包括:

显存池:PyTorch 维护一个内部的显存池,它可以从这个池中快速分配和释放显存,而不是每次都向操作系统请求或释放显存,这减少了管理开销。
重用现有空间:如果一个操作请求的显存大小与缓存中已释放的显存块大小匹配,这块显存将被重新分配给新的操作,而不需要额外的显存分配步骤。

可以参考comfyui的model_management.py文件看看怎么管理模型的

python十分灵活,但这种灵活会影响后续代码维护修改

python写多了才知道,变量类型对于维护修改是十分重要的东西

要注意到,python动态语言的灵活性,写代码的时候方便很多,可以后续阅读,维护修改就增加了很大难度。
这时候,就要借助静态语言里面的很大东西,避免这个问题,如下

  • 方法传参,固定类型,包括类型内部的东西
    完成项目时要固定类型,包括类型内部的东西,比如ndarray维度:
    由于动态特性,鸭子类型,你在写代码的时候,可能想方法传参不用固定类型,灵活传各种类型
    但是,对于完成的项目,这样是不行的
    问题:
    后续阅读修改代码困难,不知道类型,你修改代码无从下手,理解代码逻辑也有困难,还得调试的时候看一遍、

  • 参数更应该给出良好的注释,包括内部注释
    类型过于灵活,即使你固定了参数类型,但是参数内部的东西也十分灵活,比如传递list进来,list里面又可能包含各种类型。
    比如传递ndarray进来,它的维度是多少,内部数据类型是float还是int,这些不同也都会导致理解代码和修改代码困难

所以,在代码注释里面,要更加明确的标明这些东西。

  • 其它地方的变量代码,也应该对类型、类型内部给与足够的注释
    一样的道理,鸭子类型,过几天再看,你就不知道代码里面的变量具体是什么了
    比如list,list内部到底是什么?
    np数组,到底维度多少,类型是啥?
    这些对于代码修改维护都是十分重要的东西

  • 很多时候,代码操作不要过于灵活,除非性能等其它考虑
    虽然节省代码行数,但是却会带来后续阅读,修改的困难
    好的代码应该简单,简洁

模型选择

同一个任务,有不同的可选模型,但是没有相同的指标对比,
要自己对比时,要充分对比,包括各种不同情景的样例,
不要对比几个样例就完了,就急于开始动手部署了,最后弄了一大堆,结果发现效果不如另一个,简直浪费时间

另外,关于部署难度,耗时,类型效果,能不能转换trt等等,部署前也应该有足够准确的了解之后,再去部署
不然搞了半天之后发现不行,又是浪费时间

反正,就是一些关键指标,准确的弄清楚再动手,要有耐心一步一步做好,不要上来就着急着跳过必要步骤,各种指标都没弄清楚准确就开始动手部署,想看最终结果了,没耐心等一等,结果事倍功半,浪费时间。

yolov8 的一些理解

创建模型对象时,模型并没有完全创建,推理时才会完全创建,还有模型预热,所有第一次推理会有很多额外耗时

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值