【算法解析】
某些元素不相邻的排列组合题,即不邻问题,可采用插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。用这种方法解题思路清晰、简便易懂。
【实例分析】
插空法例题1:把1,2,3,4,5组成没有重复数字且数字1,2不相邻的五位数,则所有不同排法有多少种?
解析:本题直接解答较为麻烦。可先将3,4,5三个元素排定,共有A(3,3)种排法,然后再将1,2插入四个空位共有A(4,2)种排法,故由乘法原理得,所有不同的五位数有A(3,3)*A(4,2)=72种。
插空法例题2:在一张节目单中原有六个节目,若保持这些节目的相对顺序不变,再添加进去三个节目,则所有不同的添加方法共有多少种?
解析:-o-o-o-o-o-o-,即六个节目算上前后共有七个空位,那么加上的第一个节目则有A(7,1)种方法;-o-o-o-o-o-o-o-,此时有七个节目,再用第二个节目去插八个空位有A(8,1)种方法;-o-o-o-o-o-o-o-o-,此时有八个节目,用最后一个节目去插九个空位有A(9,1)种方法。
由乘法原理得,所有不同的添加方法为:A(7,1)*A(8,1)*A(9,1)=504种。
【参考文献】
https://baike.baidu.com/item/%E6%8F%92%E7%A9%BA%E6%B3%95/4862293?fr=aladdin
排列组合之插空法
最新推荐文章于 2024-05-21 22:25:10 发布