【算法分析】
● DFS 序
DFS 序表示从根结点开始对树进行 DFS 所得的结点遍历顺序。
易得上图的 DFS 序为:1,2,3,4,5,6,7,8,9。可见,通过 DFS 序,可将一棵树映射为一个一维数组。
假设以某结点 u 为根的子树大小为 cnt[u],u 在整棵树中的 DFS 序为 dfs[u],则可得结点 u 的所有子树对应的 DFS 序区间为 [dfs[u],dfs[u]+cnt[u]-1]。 → 这条性质很关键。
容易发现,一棵子树所有结点的 DFS 序是整棵树的 DFS 序的连续一段。例如,上图中以 d 为根的子树,它的各结点的 DFS 序 3,4,5,6 是整棵树的 DFS 序 1,2,3,4,5,6,7,8,9 中的连续一段。可见,借助DFS序,可以快速判断一个结点是否在某子树内。对某子树进行操作,相当于在对应的 DFS 序区间内进行操作。
利用 STL vector 存图,求树的 DFS 序的代码如下:
void dfs_seq(int u, int v) { //dfs sequence
cout<<u<<" ";
dfs[++id]=u;
for(int i=0; i<g[u].size(); i++) {
int t=g[u][i];
if(t==v) continue;
dfs_seq(t,u);
}
return;
}
● 欧拉序
欧拉序与 DFS 序很像,但也有不同。欧拉序表示从根结点出发,按照 DFS 经过所有结点并返回根结点所得的结点遍历顺序(即返回时也要记录)。
若设 first[u] 是欧拉序中某结点 u 第一次出现的位置,last[u] 是欧拉序中 u 最后一次出现的位置,则以结点 u 为根的子树包含的结点,是欧拉序区间 [first[u], last[u]] 之间的所有结点。换句话说,就是 [first[u], last[u]] 之间的结点为 u 的子结点。
欧拉序有两种情况:
(1)DFS 时,第一次访问某结点时记录一次,随后每访问完该结点的一棵子树就再记录一次,一共有 2n-1 个编号。其中,n 是树中结点的个数。
易得上图的欧拉序为:1,2,3,4,3,5,3,6,3,2,7,2,1,8,9,8,1。这是第一种情况下的欧拉序。
针对第一种情况的欧拉序,具有如下性质:即若设 first[u] 是欧拉序中某结点 u 第一次出现的位置,first[v] 是欧拉序中某结点 v 第一次出现的位置,树上两结点 u, v 的最近公共祖先(LCA),为欧拉序区间 [first[u], first[v]] 或 [first[v], first[u]] 中时间戳最小的结点。其中,某结点的时间戳可以理解为第一次 DFS 遍历到该结点的顺序。 ------→ 再次特别提醒,此性质仅适用于第一种情况下的欧拉序。
利用 STL vector 存图,在第一种情况下,求树的欧拉序的代码如下:
void ola_seq1(int u,int v) { //ola sequence 1
cout<<u<<" ";
dfs[++id]=u;
for(int i=0; i<g[u].size(); i++) {
int t=g[u][i];
if(t==v) continue;
ola_seq1(t,u);
dfs[++id]=u;
cout<<u<<" ";
}
return;
}
(2)DFS 时,每个结点入栈与出栈时分别记录一次,共 2n 个编号。其中,n 是树中结点的个数。
易得上图的欧拉序为:1,2,3,4,4,5,5,6,6,3,7,7,2,8,9,9,8,1。这是第二种情况下的欧拉序。
利用 STL vector 存图,在第二种情况下,求树的欧拉序的代码如下:
void ola_seq2(int u,int v) { //ola sequence 2
cout<<u<<" ";
dfs[++id]=u;
for(int i=0; i<g[u].size(); i++) {
int t=g[u][i];
if(t==v) continue;
ola_seq2(t,u);
}
dfs[++id]=u;
cout<<u<<" ";
return;
}
● STL vector 存图
https://blog.csdn.net/hnjzsyjyj/article/details/101233779
https://blog.csdn.net/hnjzsyjyj/article/details/101233485
https://blog.csdn.net/hnjzsyjyj/article/details/101233249
【算法代码】
下面代码的功能为输入 n 个结点,然后输入 n 对整数 a 和 b,表示 a 和 b 之间有边。之后,编码输出树的 DFS 序及两种欧拉序。
本题采用 STL vector 存树。
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
vector<int> g[maxn];
int dfs[maxn];
int n;
int id;
void dfs_seq(int u, int v) { //dfs sequence
cout<<u<<" ";
dfs[++id]=u;
for(int i=0; i<g[u].size(); i++) {
int t=g[u][i];
if(t==v) continue;
dfs_seq(t,u);
}
return;
}
void ola_seq1(int u,int v) { //ola sequence 1
cout<<u<<" ";
dfs[++id]=u;
for(int i=0; i<g[u].size(); i++) {
int t=g[u][i];
if(t==v) continue;
ola_seq1(t,u);
dfs[++id]=u;
cout<<u<<" ";
}
return;
}
void ola_seq2(int u,int v) { //ola sequence 2
cout<<u<<" ";
dfs[++id]=u;
for(int i=0; i<g[u].size(); i++) {
int t=g[u][i];
if(t==v) continue;
ola_seq2(t,u);
}
dfs[++id]=u;
cout<<u<<" ";
return;
}
int main() {
cin>>n;
for(int i=1; i<n; i++) {
int u,v;
cin>>u>>v;
g[u].push_back(v);
g[v].push_back(u);
}
id=0,dfs_seq(1,-1),cout<<endl;
id=0,ola_seq1(1,-1),cout<<endl;
id=0,ola_seq2(1,-1),cout<<endl;
return 0;
}
/*
in:
9
1 2
1 8
2 3
2 7
3 4
3 5
3 6
8 9
out:
1 2 3 4 5 6 7 8 9
1 2 3 4 3 5 3 6 3 2 7 2 1 8 9 8 1
1 2 3 4 4 5 5 6 6 3 7 7 2 8 9 9 8 1
*/
【参考文献】
https://blog.csdn.net/hnjzsyjyj/article/details/101233779
https://blog.csdn.net/hnjzsyjyj/article/details/101233485
https://blog.csdn.net/hnjzsyjyj/article/details/101233249
https://blog.csdn.net/yo_bc/article/details/80494332
https://blog.csdn.net/hnjzsyjyj/article/details/139674161
https://www.cnblogs.com/stxy-ferryman/p/7741970.html
https://www.cnblogs.com/hetailang/p/16209936.html
https://blog.csdn.net/littlegengjie/article/details/134430600
https://blog.csdn.net/zht2002/article/details/128686361