题目
给定一棵包含 n 个节点的有根无向树,节点编号互不相同,但不一定是 1∼n。
有 m 个询问,每个询问给出了一对节点的编号 x 和 y,询问 x 与 y 的祖孙关系。
输入格式
输入第一行包括一个整数 表示节点个数;
接下来 n 行每行一对整数 a 和 b,表示 a 和 b 之间有一条无向边。如果 b 是 −1,那么 a 就是树的根;
第 n+2行是一个整数 m 表示询问个数;
接下来 m 行,每行两个不同的正整数 x 和 y,表示一个询问。
输出格式
对于每一个询问,若 x 是 y 的祖先则输出 1,若 y 是 x 的祖先则输出 2,否则输出 0。
数据范围
1 ≤ n , m ≤ 4 × 10^4
1≤每个节点的编号≤4×104
思路
我们先自己造一组样例,列出表格找出规律。
输入样例
19
1 -1
1 2
1 3
2 4
2 5
3 4
4 7
4 8
6 11
6 12
8 9
8 10
11 13
12 14
9 15
9 16
13 17
13 18
16 19
0
我们可以看出,fa [ j ] [ 0 ]储存的是点 j 前面第 pow(2,0)个祖先,fa[ j ] [ 1 ]储存的是第pow(2,1)个祖先,fa[ j ] [ 2 ] 储存的是点 j 的第 pow(2,2)个祖先。
fa数组中包含的值如下:
索引 | i = 0 | i = 1 | i = 2 | i = 3 |
j = 0 | 0 | 0 | 0 | 0 |
j = 1 | 0 | 0 | 0 | 0 |
j = 2 | 1 | 0 | 0 | 0 |
j = 3 | 1 | 0 | 0 | 0 |
j = 4 | 2 | 1 | 0 | 0 |
j = 5 | 2 | 1 | 0 | 0 |
j = 6 | 3 | 1 | 0 | 0 |
j = 7 | 4 | 2 | 0 | 0 |
j = 8 | 4 | 2 | 0 | 0 |
j = 9 | 8 | 4 | 1 | 0 |
j = 10 | 8 | 4 | 1 | 0 |
j = 11 | 6 | 3 | 0 | 0 |
j = 12 | 6 | 3 | 0 | 0 |
j = 13 | 11 | 6 | 1 | 0 |
j = 14 | 12 | 6 | 1 | 0 |
j = 15 | 9 | 8 | 2 | 0 |
j = 16 | 9 | 8 | 2 | 0 |
j = 17 | 13 | 11 | 3 | 0 |
j = 18 | 13 | 11 | 3 | 0 |
j = 19 | 16 | 9 | 4 | 0 |
使用宽搜(或深搜)处理数据,将root的层数定为第一层, 将每一个点定位到属于各个点的层次(如上图所示)。fa[ i ][ j ]数组中储存点 i 的往上数第pow(2,j)个祖宗节点。
这里使用到了一个性质:
比如数字24,可以用1,2,4,8,9之和表达,其中1~24中所有数字都可以使用(1,2,3,4,8,9)进行组合而成。(这就是lca函数所运用到的性质)
所以使用这些数字相加,一定可以找到一个点的所有祖先节点。
代码
#include<bits/stdc++.h>
using namespace std;
const int N = 40010, M = N * 2;
int n,m;
int h[N],e[M],ne[M],idx;
int depth[N],fa[N][16];// depth储存该点的层数
queue<int> q;
void add(int a,int b)
{
e[idx] = b,ne[idx] = h[a],h[a] = idx ++;
}
void bfs(int root)
{
memset(depth,0x3f,sizeof depth);
depth[0] = 0;
depth[root] = 1;// 点root的层数为第一层
q.push(root);
while(!q.empty())
{
int t = q.front();
q.pop();
for(int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if(depth[j] > depth[t] + 1)
{
depth[j] = depth[t] + 1;
q.push(j);
fa[j][0] = t;//f[j][0]储存点j的直接祖宗
for(int k = 1; k <= 15; k ++)
fa[j][k] = fa[fa[j][k - 1]][k - 1];
}
}
}
}
int lca(int a,int b)
{
if(depth[a] < depth[b]) swap(a,b);
for(int k = 15; k >= 0; k --)
{
if(depth[fa[a][k]] >= depth[b])
a = fa[a][k];
}
if(a == b) return a;
for(int k = 15; k >= 0; k --)
{
if(fa[a][k] != fa[a][k])
{
a = fa[a][k];
b = fa[b][k];
}
}
return fa[a][0];
}
int main()
{
cin >> n;
int root = 0;
memset(h,-1,sizeof h);
for(int i = 0; i < n; i ++)
{
int a,b;
cin >> a >> b;
if(b == -1) root = a;
else add(a,b),add(b,a);
}
bfs(root);
cin >> m;
while(m --)
{
int a,b;
cin >> a >> b;
int p = lca(a,b);
if(p == a) cout << 1 << endl;
else if(p == b) cout << 2 << endl;
else cout << 0 << endl;
}
return 0;
}