同z科技面经

同z科技-2025-4-23

1.自我介绍

个人信息 + 校园经历 + 实习经历 + 项目经历 + 个人技能掌握 + 目前学习技术

2.封装缓存工具类怎么封装的

先介绍使用缓存的问题 + 解决的逻辑 + 封装的逻辑 + 应用

缓存穿透:

缓存雪崩:

缓存击穿:

https://www.yuque.com/hnsqls/rkzi78/mt4ywynev11fgn72

封装的逻辑—主要是对所有的类都支持运用泛型

/**
 * Redis 工具类
 * * 方法1:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置TTL过期时间
 * * 方法2:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置逻辑过期时间,用于处理缓存击穿问题
 *
 * * 方法3:根据指定的key查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题
 * * 方法4:根据指定的key查询缓存,并反序列化为指定类型,需要利用逻辑过期解决缓存击穿问题
 */
@Component
public class CacheClient {

    private  final StringRedisTemplate stringRedisTemplate;

    public CacheClient(StringRedisTemplate stringRedisTemplate) {
        this.stringRedisTemplate = stringRedisTemplate;
    }

    //range

    /**
     * 方法1:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置TTL过期时间
     * @param key
     * @param value
     * @param time
     * @param unit
     */
    public void set(String key , Object value, Long time, TimeUnit unit){
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time,unit);
    }


    /**
     * 方法2:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置逻辑过期时间,用于处理缓存击穿问题
     * @param key  redis的key
     * @param value
     * @param time
     * @param unit
     */
    public void setWithLogicalExpire(String key , Object value, Long time, TimeUnit unit){

        //RedisData 是自定义类
        RedisData redisData = new RedisData();
        redisData.setData(value);
        redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));
    }


    /**
     *  方法3:根据指定的key查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题
     * @param
     * @param id
     * @return
     */
    public <R,ID> R queryWithPassThrough(String keyPrefix, ID id, Class<R> type, Function<ID,R> dbFallback,Long time,TimeUnit unit){
        String key = keyPrefix+ id;

        // 1. 从redis中查询店铺缓存
        String json = stringRedisTemplate.opsForValue().get(key);

        //2.判断是否命中缓存  isnotblank false: "" or "/t/n" or "null"
        if(StrUtil.isNotBlank(json)){
            // 3.若命中则返回信息
            R r = JSONUtil.toBean(json, type);
            //            return Result.fail("没有该商户信息");
            return r;
        }
        //数据穿透判空   不是null 就是空串 ""
        if (json != null){
            return null;
        }
        //4.没有命中缓存,查数据库,因为不知道操作那个库,函数式编程,逻辑交给调用者完成
//       R r= getById(id); 交给调用者--》》函数式编程
        R r = dbFallback.apply(id);
        //5. 数据库为空,返回错误---》解决缓存穿透--》加入redis为空
        if (r == null){
            stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);
//            return Result.fail("没有该商户信息");
            return null;
        }

        //6. 数据库不为空,返回查询的结果并加入缓存
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(r),time, unit);
        return r;
    }

    /**
     *  方法4:根据指定的key查询缓存,并反序列化为指定类型,需要利用逻辑过期解决缓存击穿问题
     * @param id
     * @return
     */
    public <R,ID> R queryWithLogicalExpire(String keyPrefix,ID id,Class<R> type,Function<ID,R>dbFallback,String lockPrefix,Long time,TimeUnit unit){
        String key = keyPrefix+ id;

        // 1. 从redis中查询店铺缓存
        String json = stringRedisTemplate.opsForValue().get(key);

        //2.判断数据是否存在(我们对于热点key设置永不过期)  isblank
        if(StrUtil.isBlank(json)){
            // 3.若未命中中则返回空
            return null;
        }

        //4.若命中缓存 判断是否过期
        RedisData redisData = JSONUtil.toBean(json, RedisData.class);
        JSONObject data = (JSONObject) redisData.getData();
        R r = JSONUtil.toBean(data, type);
        LocalDateTime expireTime = redisData.getExpireTime();

        //未过期 直接返回查询信息
        if (expireTime.isAfter(LocalDateTime.now())){
            return r;
        }
        //过期
        // 重建缓存
        // 获取锁
        String lockKey = lockPrefix + id;
        if (tryLock(lockKey)) {
            //再次校验缓存是否未过期(线程1刚写入缓存然后释放锁,线程2在线程1释放锁的同时,执行到获得锁)
            //  从redis中查询店铺缓存
            json = stringRedisTemplate.opsForValue().get(key);

            //2.判断数据是否存在(我们对于热点key设置永不过期)  isblank
            if(StrUtil.isBlank(json)){
                // 3.若未命中中则返回空
                return null;
            }

            //4.若命中缓存 判断是否过期
            redisData = JSONUtil.toBean(json, RedisData.class);
            data = (JSONObject) redisData.getData();
            r = JSONUtil.toBean(data, type);
            expireTime = redisData.getExpireTime();

            //未过期 直接返回查询信息
            if (expireTime.isAfter(LocalDateTime.now())){
                return r;
            }

            //二次校验过后还时过期的就新开线程重构缓存


            // 获得锁,开启新线程,重构缓存 ,老线程直接返回过期信息
            CACHE_REBUILD_EXECUTOR.submit( ()->{

                try{
                    //重建缓存
                    //先查数据库 封装逻辑过期时间 再写redis
                    R r1 = dbFallback.apply(id);

                    this.setWithLogicalExpire(key, r1, time, unit);


                }catch (Exception e){
                    throw new RuntimeException(e);
                }finally {
                    unlock(lockKey);
                }
            });

        }
        //未获得锁 直接返回无效信息
        return r;
    }

    /**缓存穿透互斥锁解
     *
     * @param keyPrefix
     * @param id
     * @param type
     * @param dbFallback
     * @param time
     * @param unit
     * @return
     */
    public <R,ID>  R queryMutex(String keyPrefix, ID id, Class<R> type, Function<ID,R>dbFallback,String lockPrefix, Long time, TimeUnit unit) {
        String key = keyPrefix + id;
        //1.从redis中查询店铺缓存
        String json = stringRedisTemplate.opsForValue().get(key);
        //2.判断数据是否存在缓存
        if (StrUtil.isNotBlank(json)) {
            //2.1存在缓存
            R r = JSONUtil.toBean(json, type);
            return r;
        }
        //  2.2 是否缓存“”
        //判断命中是否为空值  ""
        if (json != null) {
            return null;
        }
        // 2.3不存在缓存
        // 3 缓存重建
        // 3.1 获取互斥锁
        String lockKey = lockPrefix + id;
        R r = null;
        try {
        boolean isLock = tryLock(lockKey);
        // 成功获取锁 - 》查数据库缓存重建
        if (isLock) {
            //二次校验 缓存是否有值
            json = stringRedisTemplate.opsForValue().get(key);
            //判断缓存是否存在
            if (StrUtil.isNotBlank(json)) {
                //存在缓存
                r = JSONUtil.toBean(json, type);
                return r;
            }
            if (json != null) {
                //缓存为 ""
                return null;
            }
            // 缓存不存在--》 查询数据库


            //  查询数据库
            r = dbFallback.apply(id);
            if (r == null) {
                //缓存空值
                stringRedisTemplate.opsForValue().set(key, "", time, unit);
            }
            //缓存重建
            stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(r), time, unit);
            //返回数据
            return r;
        }
        // 3.2 获取锁失败 -》休眠重试
            //休眠
            Thread.sleep(50);
            // 递归重试
            return queryMutex(keyPrefix, id, type, dbFallback, lockPrefix, time, unit);
        }
        catch (InterruptedException e) {
            throw new RuntimeException(e);
        }finally {
            unlock(lockKey);
        }
    }



    //endrange
    /**
     * 线程池
     */
    private  static  final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);

    /**
     * 获取所
     * @param key
     * @return
     */
    private boolean tryLock(String key){
        Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
        return BooleanUtil.isTrue(flag);

    }

    /**
     * 释放锁
     * @param key
     */
    private  void unlock(String key){
        stringRedisTemplate.delete(key);
    }
}

数据一致性问题: 看业务,强一致性和弱一致性;

感觉可以在复习一下,还是有的说的,解决缓存的通用方法,设计思想(泛型),多线程,异步

3.prompt 的编写

https://www.yuque.com/hnsqls/rkzi78/dcpbg93idy3lszy2#Y1h4O

4.考勤系统的实现

5.大模型生成图片的流程

6.传统开发和大模型应用的优劣

传统应用

  • 强逻辑确定性
  • 精确控制,高可靠性

根据业务写代码,代码运行1w次,几年后,结果都是一样的,就体现强逻辑,精确控制,高可靠,但是不好处理一些模糊性,开放性的问题。

大模型应用

  • 处理发散性,开放性,模糊性的问题
  • 复杂模式的识别

所以要结合二者,选择二者的优点,进行开发,为现在传统的应用赋能。比如说大模型其实是没有记忆的,只不过可以用传统应用,用数据库存下来,在之后的交互,吧这些进行拼接起来。

比如说

  • 智能客服
  • 文本分析,摘要
  • 多模态创作
  • 分析复杂数据,给出推测性的结论,比如说烟草,周期性的爆品
  • 情感分析
  • 智能体 自动化办公

7.那些功能用大模型比较好

大模型知识负责根据输入来分析推理数据,既没有上下文,也没有其他的功能,现在的DeepSeek,ChatGPT,等等都是传统开发和大模型的结合,用数据库实现持久化,以及上下问。大模型还是仅仅是对问题进行分析处理。所以都是二者来结合的。

大模型落地的场景

  1. 智能客服
  2. 文本分析,摘要总结
  3. 多模态创作
  4. 数据分析,推测 比如说烟草,周期性的爆品,可以根据大模型分析的预测品类销量,进货(对于银行等要求准确度高的数据,还是使用传统开发来做。)
  5. 情感分析 (语音)
  6. 智能体,自动办公(审核评价 是否是恶意评价)

8.ik 分词器

9.大模型处理复杂任务,怎么处理,有什么规范

复杂任务拆分处理,每一模块,编写特定prompt 让大模型专注这一功能进行分析。然后给其他的模块进行处理

10.MCP 怎么开发的

先聊 Function Calling 再聊 MCP ,再聊 mcp Sdk, 再聊spring ai 。

11.什么样的场景需要function calling

大模型的数据是滞后性的,要想获取最近或者获取训练库之外的数据,就需要function calling 去调用外部服务的接口,来获得外部数据。

12.hot-Key 组件

13.SQl优化

监控

分析 Explain

索引失效

回表

多表查询

14.什么情况创建索引

数据量大

查询字段

联合字段 - 覆盖索引

15.什么场景OOM内存溢出

大对象

递归调用

16.有什么编程习惯避免内存溢出

ThreadLocal

17.自己的规划

总结

缓存工具类要复习一下,有多线程,异步,以及通用的设计。

考勤系统,可以再说的具体一点,把难点提出来(多次上传,只记录一次数据,多次上传的数据中也有新增的数据;也就是如何去重的,数据库的设计, 可以提一下 insert ignore, 以及lamda 处理集合的使用分组使用)

大模型生图的流程,要加上MQ,异步的介绍。

JVM 要在复习一下常问的面试题。缺乏上线项目处理的经验多看看场景题目把。

长久更正:真实面经
https://github.com/hnsqls/interview

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值