自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 开发者的福音:PyTorch 2.5现已支持英特尔独立显卡训练

本文将在Intel®Core™ Ultra 7 155H自带的Arc™集成显卡上展示使用Pytorch2.5搭建并训练AI模型的全流程。执行下载的训练代码,实现在Intel® Arc™集成显卡上训练ResNet50模型。最后,执行命令,验证安装。看到返回结果为“True”,证明环境搭建成功!中的一个新特性就是:正式支持在英特尔®独立显卡上训练模型!在英特尔独立显卡上训练模型将为AI行业新增计算硬件选择!接着,安装Pytorch XPU版;Intel® Arc™系列。

2024-10-30 13:57:00 223

原创 [效率翻倍] 文心快码(Comate)助你轻松搞定单元测试

而在后期维护阶段,则可能需要较少的时间来编写新的测试,而更多地专注于保持现有测试的有效性。接着,编写源代码以及对应的单元测试代码,在命令行窗口中键入“pytest”命令,pytest会自动找出单元测试函数,完成单元测试并给出测试结果,如下图所示。在不考虑编程语言的情况下,生产代码(源代码)比单元测试代码的比大约是1:3,即每写一行生产代码,要写三行单元测试代码。在不考虑编程语言的情况下,生产代码(源代码)比单元测试代码的比大约是1:3,即每写一行生产代码,要写三行单元测试代码。

2024-10-18 16:43:31 1185

原创 PyTorch 2.5重磅更新:性能优化+新特性,开发者必看!

这一新版本引入了多项重要更新,包括支持 SDPA(Self-Dot Product Attention)的新 CuDNN 后端、torch.compile 的区域编译功能,以及 TorchInductor C++ 后端带来的性能加速。针对使用NVIDIA GPU的用户,PyTorch 2.5集成了最新版本的APEX库,提供了更多高级特性和更好的兼容性。对于具有动态输入尺寸的网络结构,PyTorch 2.5引入了新的编译器优化策略,显著减少了不必要的重新编译开销。提升了即时编译器的速度与生成代码质量。

2024-10-18 16:43:29 530

原创 用好数据分析方法挖掘数据意义形成业务洞察——下篇

通过选择合适的归因模型,可以分析用户行为、发现关键节点和用户需求,为运营策略提供有力支持。通过观察单个用户行为序列观察,深入了解用户对产品或服务的兴趣程度、依赖程度、使用频率等,帮助企业判断用户的真实需求和意图,进而优化产品和服务,提高用户转化率和满意度。用户画像通过标识和标签将用户分成不同群体,以便对不同群体进行差异化的产品和运营操作,以便提高产品和服务的质量和用户体验,是企业数据驱动的产品运营策略的重要组成部分。从现有用户中找到“真正的用户”,然后用这些用户的特征集合,最后按此特征找到类似的新用户。

2024-10-07 11:52:37 725

原创 在Ubuntu 24.04LTS上安装Docker

然后,将Docker APT存储库添加到您的系统中。要安装最新版本Docker,您需要从官方Docker存储库安装它。后,为了方便实现快速、可重复的构建、测试和部署,保证不同平台上开发、测试和生产环境的一致性,推荐读者安装并使用Docker。运行:sudo docker run hello-world, 出现如下图所示结果,证明Docker安装成功!运行命令docker compose version 和 docker,出现如下图所示结果。最后,安装Docker社区版(免费下载和使用)。

2024-10-07 11:52:36 802

原创 在Ubuntu上搭建OpenVINO™ Python开发环境

Anaconda(官方网站)是Python软件包(packages)和虚拟环境(virtual environment)的管理工具,让Python开发者能方便快捷地管理Python运行的虚拟环境和开发应用程序所依赖的各种软件包。Visual Studio Code 是一款功能强大的代码编辑器,非常适合跟Anaconda和Git一起,作为Python程序的集成开发环境(IDE)。,打开yolov8n_cls.onnx模型,查看模型信息,尤其是输入和输出。输入命令创建名为“ov_book"的虚拟环境。

2024-10-07 11:52:34 855

原创 用好数据分析方法挖掘数据意义形成业务洞察——上篇

在做多维度拆解的时候,最重要的是分析者的经验积累,即遇到问题时,首先根据经验得有一个假设,然后再做拆解,验证假设是否正确。例如:老板说,9月销售额下降10%,作为产品负责人的你,会先假设是服务故障出了问题,然后按分钟级别拆分数据,看看是否支撑假设;只用绝对值,察觉不到问题的严重程度,例如:DAU在增加,好像是欣欣向荣,但月活占比在下降,说明投流导入的新用户或者运营策略出了问题;只用比例值,体现不出问题规模,例如:月活50%,但注册人数只有2人,活跃用户数才1人,这种规模下的50%显然没有价值。

2024-10-06 12:10:36 935

原创 在Windows用远程桌面访问Ubuntu 24.04.1 LTS

系列产品包含多种产品形态:桌面整机、工控机、Z系列计算模块、IO模块、主板套件等,并提供灵活的系统组成方式,可以实现板卡级、套件、模组、整机的多种方式,通过搭建积木的方式整合了最新的CPU、GPU、IO模块,组成高效紧凑的计算单元,旨在加速人工智能、物联网、边缘计算等领域的应用开发与实际部署,赋能未来科技的无限可能!在Windows中,启动“远程桌面连接”,填入第二步设置中的IP地址和端口号,点击“连接”按钮,接着输入第二步设置中的用户名和密码,即可享受在Windows中远程控制Ubuntu设备的乐趣了。

2024-10-06 12:10:18 895

原创 在算力魔方上用OpenVINO™完成YOLOv11的优化和部署

可见只需要载入并编译yolo11m OpenVINO™ IR模型,然后替换YOLOv11的原生推理计算方法,即可用不到10行Python代码,实现YOLOv11在英特尔®硬件上的推理计算加速了。通过选择不同算力的计算模块,再搭配不同的 IO 模块可以组成丰富的配置,适应不同场景。性能不够时,可以升级计算模块提升算力;YOLOv11在准确性和检测速度上再创新高,通过架构和训练方法的革新,极大地提升了目标检测的综合性能。精炼的架构设计和优化的训练流程实现了更快的处理速度,同时保持了准确性和性能之间的平衡。

2024-10-06 12:09:59 615

原创 三步完成Llama3.2在算力魔方的INT4量化和部署

Llama 3.2的1B和3B参数版本是一个支持多种语言大型语言模型,其指令调优纯文本模型Llama-3.2-1B-Instruct和Llama-3.2-3B-Instruct,针对多语言对话用例进行了优化,包括代理检索和摘要任务,性能参数如下图所示。把Llama-3.2-1B-Instruct模型的预训练权重下载到本地后,接下来本文将依次介绍基于Optimum Intel工具将Llama-3.2-1B-Instruct进行INT4量化,并完成本地部署。性能不够时,可以升级计算模块提升算力;

2024-09-30 15:50:43 1030

原创 OpenVINO™全面支持在ARM处理器上执行AI推理计算

可以预见,未来OpenVINO™将成为一个真正的,同时支持Intel® CPU、ARM架构CPU和RISC-V架构CPU的跨平台推理引擎,性能不断优化,生态更加繁荣!更好的算力魔方®期待您的意见与建议!算力魔方®t=O83At=O83A。

2024-09-30 15:47:34 718

转载 用Stable Diffusion 3 在算力魔方上创作Midjourney品质的图片

ComfyUI是基于模块化设计的,最强大的Stable Diffusion模型的图形界面和运行后端:该图形界面将让您使用基于节点-流程图的设计并运行Stable Diffusion的工作流水线。最后,sd3虚拟环境下,运行run_nvivida.bat,完成ComfyUI的安装。是一款模块化的迷你主机,采用了抽屉式设计,后续组装、升级、维护只需要拔插算力和IO模块即可组成丰富的配置,适应不同场景。完成登录和License申请。4060版,能够在高效地处理复杂的3D模型和图像时,保证运行的速度和稳定性。

2024-09-29 11:23:13 40

转载 基于OpenVINO™与Qwen2在算力魔方上写2024高考作文!

Optimum Intel作为Transformers和Diffusers库与Intel提供的各种优化工具之间的接口层,它给开发者提供了一种简便的使用方式,让这两个库能够利用Intel®针对硬件优化的技术,例如:OpenVINO™、IPEX等,加速基于Transformer或Diffusion构架的AI大模型在英特尔®硬件上的推理计算性能。的确,随着人工智能的发展,尤其是ChatGPT的横空出世,人工智能确实能够写诗作画了,而利用人工智能来写一些文章,已经是一些打工人的常规操作。

2024-09-29 11:22:49 45

原创 OpenVINO 2024.4发布,支持更多新特性!

OpenVINO™ Model Server现在提供了对OpenAI兼容API的生产级支持,这使得在英特尔® 至强® 处理器上服务大语言模型(LLM)时,能够显著提升并行推理的吞吐量,满足大量并发用户的需求。OpenVINO™在2024年9月19日再次迎来重大更新,发布了OpenVINO™ 2024.4版本,不仅扩大了对生成式人工智能(Gen AI)的覆盖范围和框架集成,还引入了一系列新特性和优化,旨在最小化代码更改,提升性能和便携性,为开发者提供更为丰富和高效的AI工具集。期待您的意见与建议!

2024-09-25 15:51:21 640

原创 使用PP-YOLOE替换YOLOv8消除商业化使用中的潜在风险

YOLOv5 和 YOLOv8 的软件许可证为AGPL-3.0,对商业化产品不友好;另外还附加了Enterprise License,要求使用者在商用时,必须给Ultralytics公司付费。而PP-YOLOE的软件许可证为Apache-2.0, 对商业化产品友好,也无需在商用时支付费用。所以,使用PP-YOLOE替换YOLOv5和YOLOv8,可以消除商业化使用中的侵权风险、声誉风险和诉讼风险。

2024-09-25 15:51:19 979

原创 使用AnythingLLM在算力魔方上搭建企业私有知识库

​无需编写程序,即可在算力魔方®上使用Ollama+AnythingLLM方便快捷的搭建企业私有知识库,还好省钱省心。员工在具有企业专业知识的聊天机器人的帮助下,很快就能成为行业“老师傅”了!

2024-07-08 18:07:30 1736

转载 Gemma 2+Ollama在算力魔方上帮你在LeetCode解题

无需编写程序,即可在算力魔方®上使用Gemma 2 + Ollama方便快捷的部署AI大模型,并让它协助编写程序,还能在leetcode上获得很高的名次。当AI大模型可以协助我们编写高品质的代码片段后,端到端的工作流就变成非常重要了。

2024-07-06 17:16:15 120

原创 AIPC的先行者——算力魔方!

英特尔®正式启动“AI PC 加速计划”,这项全球创新行动计划,以加速 AI 在客户端计算产业的发展速度。英特尔®“AI PC 加速计划”将在 2025 年前为超过 1亿台 PC 带来人工智能特性。从此开启了AIPC的时代。

2024-02-29 15:54:43 708

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除