pytorch一步一步在VGG16上训练自己的数据集

准备数据集及加载,ImageFolder

在很多机器学习或者深度学习的任务中,往往我们要提供自己的图片。也就是说我们的数据集不是预先处理好的,像mnist,cifar10等它已经给你处理好了,更多的是原始的图片。比如我们以猫狗分类为例。在data文件下,有两个分别为train和val的文件夹。然后train下是cat和dog两个文件夹,里面存的是自己的图片数据,val文件夹同train。这样我们的数据集就准备好了。
在这里插入图片描述
ImageFolder能够以目录名作为标签来对数据集做划分,下面是pytorch中文文档中关于ImageFolder的介绍:
在这里插入图片描述

#对训练集做一个变换
train_transforms = transforms.Compose([
    transforms.RandomResizedCrop(224),		#对图片尺寸做一个缩放切割
    transforms.RandomHorizontalFlip(),		#水平翻转
    transforms.ToTensor(),					#转化为张量
    transforms.Normalize((.5, .5, .5), (.5, .5, .5))	#进行归一化
])
#对测试集做变换
val_transforms = transforms.Compose([
    transforms.Resize(256),
    transforms.RandomResizedCrop(224),
    transforms.ToTensor(),
    transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])

train_dir = "G:/data/train"           #训练集路径
#定义数据集
train_datasets = datasets.ImageFolder(train_dir, transform=train_transforms)
#加载数据集
train_dataloader = torch.utils.data.DataLoader(train_datasets, batch_size=batch_size, shuffle=True)

val_dir = "G:/da
评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值