pytorch加载自己的图像数据集

pytorch加载自己的图像数据集

之前学习深度学习算法,都是使用网上现成的数据集,而且都有相应的代码。到了自己开始写论文做实验,用到自己的图像数据集的时候,才发现无从下手 ,相信很多新手都会遇到这样的问题。
参考博文https://blog.csdn.net/TH_NUM/article/details/80877196
下面代码实现了从文件夹内读取所有图片,进行归一化和标准化操作并将图片转化为tensor。最后读取第一张图片并显示。
kmeans对自己的图像数据集聚类

# 数据处理
import os
import torch
from torch.utils import data
from PIL import Image
import numpy as np
from torchvision import transforms

transform = transforms.Compose([
    transforms.ToTensor(),  # 将图片转换为Tensor,归一化至[0,1]
    # transforms.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5])  # 标准化至[-1,1]
])


#定义自己的数据集合
class FlameSet(data.Dataset):
    def __init__(self,root):
        # 所有图片的绝对路径
        imgs=os.listdir(root)
        self.imgs=[os.path.join(root,k) for k in imgs]
        self.
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值