转载:原文网址https://blog.csdn.net/langb2014/article/details/53082704
本文整理了pycaffe中常用的API
Packages导入
1
2
3
| import caffe
from caffe import layers as L
from caffe import params as P
|
Layers定义
Data层定义
lmdb/leveldb Data层定义
1
2
3
4
5
6
7
8
9
10
| L.Data(
source=lmdb,
backend=P.Data.LMDB,
batch_size=batch_size, ntop=2,
transform_param=dict(
crop_size=227,
mean_value=[104, 117, 123],
mirror=True
)
)
|
HDF5 Data层定义
1
2
3
4
5
6
7
8
9
| L.HDF5Data(
hdf5_data_param={
'source': './training_data_paths.txt',
'batch_size': 64
},
include={
'phase': caffe.TRAIN
}
)
|
ImageData Data层定义
适用于txt文件一行记录一张图片的数据源
1
2
3
4
5
6
7
8
| L.ImageData(
source=list_path,
batch_size=batch_size,
new_width=48,
new_height=48,
ntop=2,
ransform_param=dict(crop_size=40,mirror=True)
)
|
Convloution层定义
1
2
3
4
5
6
7
8
| L.Convolution(
bottom,
kernel_size=ks,
stride=stride,
num_output=nout,
pad=pad,
group=group
)
|
LRN层定义
1
2
3
4
5
6
| L.LRN(
bottom,
local_size=5,
alpha=1e-4,
beta=0.75
)
|
Activation层定义
ReLU层定义
1
2
3
4
| L.ReLU(
bottom,
in_place=True
)
|
Pooling层定义
1
2
3
4
5
6
| L.Pooling(
bottom,
pool=P.Pooling.MAX,
kernel_size=ks,
stride=stride
)
|
FullConnect层定义
1
2
3
4
| L.InnerProduct(
bottom,
num_output=nout
)
|
Dropout层定义
1
2
3
4
| L.Dropout(
bottom,
in_place=True
)
|
Loss层定义
1
2
3
4
| L.SoftmaxWithLoss(
bottom,
label
)
|
Accuracy层定义
1
2
3
4
| L.Accuracy(
bottom,
label
)
|
转换为proto文本
1
2
3
4
| caffe.to_proto(
loss,
acc
)
|
Solver定义
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
| from caffe.proto import caffe_pb2
s = caffe_pb2.SolverParameter()
path='/home/xxx/data/'
solver_file=path+'solver.prototxt'
s.train_net = path+'train.prototxt'
s.test_net.append(path+'val.prototxt')
s.test_interval = 782
s.test_iter.append(313)
s.max_iter = 78200
s.base_lr = 0.001
s.momentum = 0.9
s.weight_decay = 5e-4
s.lr_policy = 'step'
s.stepsize=26067
s.gamma = 0.1
s.display = 782
s.snapshot = 7820
s.snapshot_prefix = 'shapshot'
s.type = “SGD”
s.solver_mode = caffe_pb2.SolverParameter.GPU
with open(solver_file, 'w') as f:
f.write(str(s))
|
Model训练
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
| # 训练设置
# 使用GPU
caffe.set_device(gpu_id)
caffe.set_mode_gpu()
# 使用CPU
caffe.set_mode_cpu()
# 加载Solver,有两种常用方法
# 1. 无论模型中Slover类型是什么统一设置为SGD
solver = caffe.SGDSolver('/home/xxx/data/solver.prototxt')
# 2. 根据solver的prototxt中solver_type读取,默认为SGD
solver = caffe.get_solver('/home/xxx/data/solver.prototxt')
# 训练模型
# 1.1 前向传播
solver.net.forward()
solver.test_nets[0].forward()
# 1.2 反向传播,计算梯度
solver.net.backward()
# 2. 进行一次前向传播一次反向传播并根据梯度更新参数
solver.step(1)
# 3. 根据solver文件中设置进行完整model训练
solver.solve()
|
如果想在训练过程中保存模型参数,调用
1
| solver.net.save('mymodel.caffemodel')
|
分类图片
加载Model数据
1
2
3
4
5
| net = caffe.Net(
deploy_prototxt_path,
caffe_model_path,
caffe.TEST
)
|
中值文件转换
1
2
3
4
5
6
7
8
9
10
11
12
13
| # 编写一个函数,将二进制的均值转换为python的均值
def convert_mean(binMean,npyMean):
blob = caffe.proto.caffe_pb2.BlobProto()
bin_mean = open(binMean, 'rb' ).read()
blob.ParseFromString(bin_mean)
arr = np.array( caffe.io.blobproto_to_array(blob) )
npy_mean = arr[0]
np.save(npyMean, npy_mean )
# 调用函数转换均值
binMean='examples/cifar10/mean.binaryproto'
npyMean='examples/cifar10/mean.npy'
convert_mean(binMean,npyMean)
|
图片预处理
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| # 设定图片的shape格式为网络data层格式
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
# 改变维度的顺序,由原始图片维度(width, height, channel)变为(channel, width, height)
transformer.set_transpose('data', (2,0,1))
# 减去均值,注意要先将binaryproto格式均值文件转换为npy格式[此步根据训练model时设置可选]
transformer.set_mean('data', np.load(mean_file_path).mean(1).mean(1))
# 缩放到[0,255]之间
transformer.set_raw_scale('data', 255)
# 交换通道,将图片由RGB变为BGR
transformer.set_channel_swap('data', (2,1,0))
# 加载图片
im=caffe.io.load_image(img)
# 执行上面设置的图片预处理操作,并将图片载入到blob中
net.blobs['data'].data[...] = transformer.preprocess('data',im)
|
执行测试
1
2
3
4
5
6
7
8
9
10
11
12
| #执行测试
out = net.forward()
labels = np.loadtxt(labels_filename, str, delimiter='\t')
prob= net.blobs['Softmax1'].data[0].flatten()
print prob
order=prob.argsort()[0]
print 'the class is:',labels[order]
# 取出前五个较大值所在的序号
top_inds = prob.argsort()[::-1][:5]
print 'probabilities and labels:' zip(prob[top_inds], labels[top_inds])
|
各层信息显示
1
2
3
4
5
6
7
| # params显示:layer名,w,b
for layer_name, param in net.params.items():
print layer_name + '\t' + str(param[0].data.shape), str(param[1].data.shape)
# blob显示:layer名,输出的blob维度
for layer_name, blob in net.blobs.items():
print layer_name + '\t' + str(blob.data.shape)
|
自定义函数:参数/卷积结果可视化
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
| import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import caffe
%matplotlib inline
plt.rcParams['figure.figsize'] = (8, 8)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
def show_data(data, padsize=1, padval=0):
"""Take an array of shape (n, height, width) or (n, height, width, 3)
and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)"""
data -= data.min()
data /= data.max()
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.figure()
plt.imshow(data,cmap='gray')
plt.axis('off')
# 示例:显示第一个卷积层的输出数据和权值(filter)
print net.blobs['conv1'].data[0].shape
show_data(net.blobs['conv1'].data[0])
print net.params['conv1'][0].data.shape
show_data(net.params['conv1'][0].data.reshape(32*3,5,5))
|
自定义:训练过程Loss&Accuracy可视化
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
| import matplotlib.pyplot as plt
import caffe
caffe.set_device(0)
caffe.set_mode_gpu()
# 使用SGDSolver,即随机梯度下降算法
solver = caffe.SGDSolver('/home/xxx/mnist/solver.prototxt')
# 等价于solver文件中的max_iter,即最大解算次数
niter = 10000
# 每隔100次收集一次loss数据
display= 100
# 每次测试进行100次解算
test_iter = 100
# 每500次训练进行一次测试
test_interval =500
#初始化
train_loss = zeros(ceil(niter * 1.0 / display))
test_loss = zeros(ceil(niter * 1.0 / test_interval))
test_acc = zeros(ceil(niter * 1.0 / test_interval))
# 辅助变量
_train_loss = 0; _test_loss = 0; _accuracy = 0
# 进行解算
for it in range(niter):
solver.step(1)
_train_loss += solver.net.blobs['SoftmaxWithLoss1'].data
if it % display == 0:
train_loss[it // display] = _train_loss / display
_train_loss = 0
if it % test_interval == 0:
for test_it in range(test_iter):
solver.test_nets[0].forward()
_test_loss += solver.test_nets[0].blobs['SoftmaxWithLoss1'].data
_accuracy += solver.test_nets[0].blobs['Accuracy1'].data
test_loss[it / test_interval] = _test_loss / test_iter
test_acc[it / test_interval] = _accuracy / test_iter
_test_loss = 0
_accuracy = 0
# 绘制train loss、test loss和accuracy曲线
print '\nplot the train loss and test accuracy\n'
_, ax1 = plt.subplots()
ax2 = ax1.twinx()
# train loss -> 绿色
ax1.plot(display * arange(len(train_loss)), train_loss, 'g')
# test loss -> 黄色
ax1.plot(test_interval * arange(len(test_loss)), test_loss, 'y')
# test accuracy -> 红色
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')
ax1.set_xlabel('iteration')
ax1.set_ylabel('loss')
ax2.set_ylabel('accuracy')
plt.show() |