ICA、PCA、SVD三者之间的联系和区别

ICA,是投影后样本的 各个维度之间的独立性最大;

PCA,是投影后,样本的各个维度上的方差最大;

SVD的地位和特征值分解是一样的。属于矩阵分解的一种。可以用来找协方差矩阵的特征向量(说白了就是求解PCA的投影矩阵)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值