坑 ICA,是投影后样本的 各个维度之间的独立性最大; PCA,是投影后,样本的各个维度上的方差最大; SVD的地位和特征值分解是一样的。属于矩阵分解的一种。可以用来找协方差矩阵的特征向量(说白了就是求解PCA的投影矩阵)。