区间最大子段和 + 最大子矩阵和 + 最大m子段和(DP)

- 区间最大子段和(最大连续区间和)

动态规划解法:

dp[i]表示以a[i]为结束的最大连续子段和

因为是以a[ i ]为结束且是连续子段 那么
dp[ i ] 要么就是 a[ i ]本身,
要么 就是a[ i ] + 以a[ i-1 ]为结束的最大连续字段和 也就是 a[ i ] + dp[ i - 1 ],
所以 状态转移方程出来了 dp[i] = max( a[i], dp[i-1]+a[i] )
(引用自最大连续区间和算法详解+代码

#include<iostream>
#include<cstring>
using namespace std;
const int inf=0x3f3f3f3f;
int dp[10003],a[10003];
int main()
{
    ios::sync_with_stdio(false);
    int n;
    while(!(cin>>n).eof())
    {
        int i,j;
        int max1=-inf;
        memset(dp,0,sizeof(dp));
        memset(a,0,sizeof(a));

        for(int i=1;i<=n;i++){
            cin>>a[i];
        }

        for(i=1;i<=n;i++){
            dp[i]=max(a[i],dp[i-1]+a[i]);
            max1=max(max1,dp[i]);
            //cout<<dp[i]<<' ';
        }
        cout<<max1<<endl;
    }
    return 0;
}

优化:看状态转移方程可以发现,dp[i]只和上一个dp[i-1]有关,所以可以不用数组,用一个变量足矣。

#include<iostream>
using namespace std;
const int inf=0x3f3f3f3f;
int a[10003];
int main()
{
    ios::sync_with_stdio(false);
    int n;
    while(!(cin>>n).eof())
    {
        int i,j,dp=0;
        int max1=-inf;
        int y=0;
        for(int i=1;i<=n;i++){
            cin>>a[i];
            dp=max(a[i],dp+a[i]);
            max1=max(max1,dp);
        }
        cout<<max1<<endl;
    }
    return 0;
}

- 最大子矩阵和

给出一个m×n的矩阵,请输出它的最大子矩阵和。
多测试用例,每个测试用例:

第一行是两个正整数m和n,表示该矩阵的行数和列数。1 < m, n < 400

接下来m行,每行n个整数,空格分隔。

Sample Input
4 4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

Sample Output
15

#include<bits/stdc++.h>
using namespace std;
const int maxn = 402;
int main()
{
    int m, n, x;
    while (~scanf("%d%d", &m, &n)) {
        int sum[maxn][maxn] = {0}, t, ans = 0;
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                scanf("%d", &x);
                sum[i][j] = sum[i - 1][j] + x;//前i行j列的前缀和
            }
        }
        for (int i = 1; i <= m; i++) {
            for (int j = i; j <= m; j++) {
                t = 0;
                for (int k = 1; k <= n; k++) {
                    t += sum[j][k] - sum[i - 1][k];
                    if (t < 0) t = 0;
                    if (t > ans) ans = t;
                }
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}

-最大m子段和

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

#include<bits/stdc++.h>
#define MAXN 200005
#define INF 0x3f3f3f3
using namespace std;
int vis[MAXN], a[MAXN], dp[MAXN];
int main(){
    int m, n, ans;
    while(~scanf("%d%d", &n, &m)){
        int t = 0, sum = 0;
        memset(vis, 0, sizeof(vis));
        memset(dp, 0, sizeof(dp));
        for(int i = 1; i <= n; i++)
            scanf("%d", &a[i]);
        for(int i = 1; i <= m; i++){
            ans = -INF;
            for(int j = i; j <= n; j++){ //这里j从i开始,因为前面已经分了i-1个区间,至少用了i-1个元素
                dp[j] = max(dp[j-1] + a[j], vis[j-1] + a[j]);
                vis[j-1] = ans;
                ans = max(ans, dp[j]);
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值