- 区间最大子段和(最大连续区间和)
动态规划解法:
dp[i]表示以a[i]为结束的最大连续子段和
因为是以a[ i ]为结束且是连续子段 那么
dp[ i ] 要么就是 a[ i ]本身,
要么 就是a[ i ] + 以a[ i-1 ]为结束的最大连续字段和 也就是 a[ i ] + dp[ i - 1 ],
所以 状态转移方程出来了 dp[i] = max( a[i], dp[i-1]+a[i] )
(引用自最大连续区间和算法详解+代码)
#include<iostream>
#include<cstring>
using namespace std;
const int inf=0x3f3f3f3f;
int dp[10003],a[10003];
int main()
{
ios::sync_with_stdio(false);
int n;
while(!(cin>>n).eof())
{
int i,j;
int max1=-inf;
memset(dp,0,sizeof(dp));
memset(a,0,sizeof(a));
for(int i=1;i<=n;i++){
cin>>a[i];
}
for(i=1;i<=n;i++){
dp[i]=max(a[i],dp[i-1]+a[i]);
max1=max(max1,dp[i]);
//cout<<dp[i]<<' ';
}
cout<<max1<<endl;
}
return 0;
}
优化:看状态转移方程可以发现,dp[i]只和上一个dp[i-1]有关,所以可以不用数组,用一个变量足矣。
#include<iostream>
using namespace std;
const int inf=0x3f3f3f3f;
int a[10003];
int main()
{
ios::sync_with_stdio(false);
int n;
while(!(cin>>n).eof())
{
int i,j,dp=0;
int max1=-inf;
int y=0;
for(int i=1;i<=n;i++){
cin>>a[i];
dp=max(a[i],dp+a[i]);
max1=max(max1,dp);
}
cout<<max1<<endl;
}
return 0;
}
- 最大子矩阵和
给出一个m×n的矩阵,请输出它的最大子矩阵和。
多测试用例,每个测试用例:
第一行是两个正整数m和n,表示该矩阵的行数和列数。1 < m, n < 400
接下来m行,每行n个整数,空格分隔。
Sample Input
4 4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
Sample Output
15
#include<bits/stdc++.h>
using namespace std;
const int maxn = 402;
int main()
{
int m, n, x;
while (~scanf("%d%d", &m, &n)) {
int sum[maxn][maxn] = {0}, t, ans = 0;
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
scanf("%d", &x);
sum[i][j] = sum[i - 1][j] + x;//前i行j列的前缀和
}
}
for (int i = 1; i <= m; i++) {
for (int j = i; j <= m; j++) {
t = 0;
for (int k = 1; k <= n; k++) {
t += sum[j][k] - sum[i - 1][k];
if (t < 0) t = 0;
if (t > ans) ans = t;
}
}
}
printf("%d\n", ans);
}
return 0;
}
-最大m子段和
#include<bits/stdc++.h>
#define MAXN 200005
#define INF 0x3f3f3f3
using namespace std;
int vis[MAXN], a[MAXN], dp[MAXN];
int main(){
int m, n, ans;
while(~scanf("%d%d", &n, &m)){
int t = 0, sum = 0;
memset(vis, 0, sizeof(vis));
memset(dp, 0, sizeof(dp));
for(int i = 1; i <= n; i++)
scanf("%d", &a[i]);
for(int i = 1; i <= m; i++){
ans = -INF;
for(int j = i; j <= n; j++){ //这里j从i开始,因为前面已经分了i-1个区间,至少用了i-1个元素
dp[j] = max(dp[j-1] + a[j], vis[j-1] + a[j]);
vis[j-1] = ans;
ans = max(ans, dp[j]);
}
}
printf("%d\n", ans);
}
return 0;
}