题目大意
两个人可以在一堆字符串中选择一个作为开头
然后两人开始博弈,过程为:
当前选择的字符的前三位字符一定要是上一次选择的一样,而且不能改变顺序,谁最先不能走就比赛失败
两人的方案都以能活下去而不是以赢对手
解法
由于直接建图的话可能存在
n
2
n^2
n2 条边,这是空间和事件不能接受的,故考虑将原有字符串拆点
其实际就是前三个字符和后三个字符在影响边的情况,所以我们将一个字符串拆开成为两个点,一个是其前三个字符代表的点,另一个是后三个字符代表的点
这样点的状态就十分有限了,其数量<15K
然后以博弈思想,当前必胜点的前一步一定是必败点
得到建图思路为反向建立图,将入度为0的点标记为必胜点,并且加入topsort的序列
注意,对于先手来说,对局优先级顺序应该为:获胜>循环>失败
那么对于倒转回去存在环的情况,有两种状态
1:环入口向外走必胜,那么不用在环内循环以避免失败
2:环入口向外走必败,那么在环内循环
代码如下
#include <bits/stdc++.h>
using namespace std;
#define ll long long
struct node
{
int to, next;
};
int head[150010];
node edge[1000010];
int n, k;
int in[150010];
int ans[150010];
int ls[200010];
int get(char c)
{
if (c >= 'A' && c <= 'Z')
c = c - 'A' + 26;
else
c = c - 'a';
return c;
}
int get_hash(char a, char b, char c)
{
a = get(a);
b = get(b);
c = get(c);
return a * 52 * 52 + b * 52 + c;
}
void add(int come, int to)
{
edge[++k] = node{to, head[come]};
head[come] = k;
}
int main()
{
scanf("%d", &n);
string s;
for (int i = 1, len; i <= n; i++)
{
cin >> s;
len = s.length();
int head = get_hash(s[0], s[1], s[2]);
int tail = get_hash(s[len - 3], s[len - 2], s[len - 1]);
add(tail, head);
in[head]++;
ls[i] = tail;
}
queue<int> q;
memset(ans, -1, sizeof(ans));
for (int i = 0; i <= 150000; i++)
{
if (in[i] == 0)
{
ans[i] = 0;
q.push(i);
}
}
while (!q.empty())
{
int u = q.front();
q.pop();
for (int i = head[u]; i; i = edge[i].next)
{
int v = edge[i].to;
if (ans[v] == -1)
{
in[v]--;
if (ans[u] == 0)
ans[v] = 1, q.push(v);
else if (in[v] == 0)
ans[v] = 0, q.push(v);
}
}
}
for (int i = 1; i <= n; i++)
{
if (ans[ls[i]] == -1)
printf("Draw\n");
if (ans[ls[i]] == 0)
printf("Takahashi\n");
if (ans[ls[i]] == 1)
printf("Aoki\n");
}
}
/*
6
aaabbb
bbbccc
cccddd
dddbbb
ccceee
eeefff
*/