ACM图论专题-AtCoder-abc209_e-Problem E

AtCoder-abc209_e-Problem E

题目大意

两个人可以在一堆字符串中选择一个作为开头
然后两人开始博弈,过程为:
当前选择的字符的前三位字符一定要是上一次选择的一样,而且不能改变顺序,谁最先不能走就比赛失败
两人的方案都以能活下去而不是以赢对手

解法

由于直接建图的话可能存在 n 2 n^2 n2 条边,这是空间和事件不能接受的,故考虑将原有字符串拆点
其实际就是前三个字符和后三个字符在影响边的情况,所以我们将一个字符串拆开成为两个点,一个是其前三个字符代表的点,另一个是后三个字符代表的点
这样点的状态就十分有限了,其数量<15K

然后以博弈思想,当前必胜点的前一步一定是必败点
得到建图思路为反向建立图,将入度为0的点标记为必胜点,并且加入topsort的序列

注意,对于先手来说,对局优先级顺序应该为:获胜>循环>失败

那么对于倒转回去存在环的情况,有两种状态
1:环入口向外走必胜,那么不用在环内循环以避免失败
2:环入口向外走必败,那么在环内循环

代码如下

#include <bits/stdc++.h>
using namespace std;
#define ll long long
struct node
{
    int to, next;
};
int head[150010];
node edge[1000010];
int n, k;
int in[150010];
int ans[150010];
int ls[200010];

int get(char c)
{
    if (c >= 'A' && c <= 'Z')
        c = c - 'A' + 26;
    else
        c = c - 'a';
    return c;
}

int get_hash(char a, char b, char c)
{
    a = get(a);
    b = get(b);
    c = get(c);
    return a * 52 * 52 + b * 52 + c;
}

void add(int come, int to)
{
    edge[++k] = node{to, head[come]};
    head[come] = k;
}

int main()
{
    scanf("%d", &n);
    string s;
    for (int i = 1, len; i <= n; i++)
    {
        cin >> s;
        len = s.length();
        int head = get_hash(s[0], s[1], s[2]);
        int tail = get_hash(s[len - 3], s[len - 2], s[len - 1]);

        add(tail, head);
        in[head]++;
        ls[i] = tail;
    }

    queue<int> q;
    memset(ans, -1, sizeof(ans));
    for (int i = 0; i <= 150000; i++)
    {
        if (in[i] == 0)
        {
            ans[i] = 0;
            q.push(i);
        }
    }

    while (!q.empty())
    {
        int u = q.front();
        q.pop();
        for (int i = head[u]; i; i = edge[i].next)
        {
            int v = edge[i].to;
            if (ans[v] == -1)
            {
                in[v]--;
                if (ans[u] == 0)
                    ans[v] = 1, q.push(v);
                else if (in[v] == 0)
                    ans[v] = 0, q.push(v);
            }
        }
    }

    for (int i = 1; i <= n; i++)
    {
        if (ans[ls[i]] == -1)
            printf("Draw\n");
        if (ans[ls[i]] == 0)
            printf("Takahashi\n");
        if (ans[ls[i]] == 1)
            printf("Aoki\n");
    }
}
/*
6
aaabbb
bbbccc
cccddd
dddbbb
ccceee
eeefff
*/

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值