Leetcode122. 买卖股票的最佳时机 II
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
解法一,主要思想是回溯搜索,但是太耗时没有通过leetcode,但这种思想可以值得借鉴。
class Solution:
def __init__(self):
self.res = 0
def maxProfit(self, prices) -> int:
self.dfs(prices, 0, len(prices), 0, 0)
return self.res
def dfs(self, prices, step, length, state, profit):
'''
step 第几天
len, 长度
state 0 为现金, 1为股票
profit 当前选择的利润
'''
if (step == length):
self.res = max(profit, self.res)
return
# 在每个节点上都有两个选择,当前状态是state, 下一个状态是非state。两个状态都要遍历,故此处先dfs一次,
# 第二次的dfs根据此次的state来遍历。
self.dfs(prices, step + 1, length, state, profit)
if state == 0:
# 持有现金,也即卖出股票了
self.dfs(prices, step + 1, length, 1, profit - prices[step])
else:
# 持有股票,可以在此步卖出
self.dfs(prices, step + 1, length, 0, profit + prices[step])
解法二,动态规划。 动态规划有点像数学中的归纳法,从基准条件递推到目标值,从面得到相应的解。
class Solution:
def maxProfit(self, prices: List[int]) -> int:
# dp[i][j] i 表示天数, j表示是否持有股票,值表示第i天持有的现金值
dp = [[x for x in range(2)] for i in range(len(prices))]
dp[0][0] = 0 # 二维变量0表示持有现金
dp[0][1] = -prices[0] # 1表示持有股票
for i in range(1, len(prices)):
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i]) # 持有 或 卖出
# 分别计算第i天时,持有现金与股票时的现金值
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]) # 持有 或 买进
return dp[len(prices) - 1][0]
解法三,累加后一天比前一天产生的利益,就是最大的利润。
class Solution:
def maxProfit(self, prices: List[int]) -> int:
maxProfit = 0
for i in range(1, len(prices)):
delta = prices[i] - prices[i - 1]
if delta > 0:
maxProfit += delta
return maxProfit