L1 L2正则化及贝叶斯解释

本文探讨L1和L2正则化的区别,L1正则化产生稀疏解,适用于特征选择,而L2正则化得到平滑解。从贝叶斯角度,L1对应Laplace分布,L2对应高斯分布。正则化通过引入先验知识避免过拟合,L1鼓励稀疏解,L2则趋向于0。
摘要由CSDN通过智能技术生成


1 L1正则化和L2正则化区别

  • L1得到的是稀疏权值,可以用于特征选择,假设参数服从Laplace分布(贝叶斯角度理解)
  • L2得到的是平滑权值,因为所有权值都趋于最小,假设参数服从Gauss分布,(并趋于一致,因为一致时平方和,最小)

2 L1正则化稀疏解理解

2.1问题转化


2.2图形化解释

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值