ContextNet:基于上下文信息优化特征Embedding的CTR模型

ContextNet是一种基于上下文信息的点击率(CTR)预测框架,通过动态优化特征embedding来提升预测准确性。该模型包括上下文embedding模块,用于聚合特征的上下文信息,以及ContextNet块,将高阶上下文特征交叉信息整合进特征embedding,从而实现动态优化。这一方法受到NLP中利用上下文信息优化词向量的启发,旨在解决CTR预估中的多义词问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

更多精彩内容欢迎关注公众号:缄默笔记

论文: ContextNet: A Click-Through Rate Prediction Framework Using Contextual information to Refine Feature Embedding

Link: https://arxiv.org/pdf/2107.12025.pdf

在NLP领域,通过embedding可以把word从离散空间映射到语义空间,早期阶段Word2vec、GloVe等算法,没有考虑上下文信息,每个word学习得到一个固定的embedding,对于一些多义词,在不同语境意思是不同的(如“苹果”,喜欢苹果手机、喜欢苹果香蕉),针对该问题,ELMO、Bert等算法,利用上下文信息动态预测embedding表示。

受此启发,利用上下文信息,逐层动态优化(dynamically refine)特征embedding向量,也是非常重要的。本文提出通过上下文信息动态优化特征embedding的CTR预估框架ContextNet,主要由两部分构成:

(1)Contextual embedding模块:对每个特征的上下文信息进行聚合

(2)ContextNet block:把上下文高阶特征交叉信息融入特征embedding,动态优化特征embedding;

详细解读见&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值