数字推理题 5

A50 B65 C75 D56

分析:D1×2=23×4=125×6=307×8=()=56

 

46755143887( )

A.167B.68C.169 D.170

分析:A5+12-1=5,5+32=14,14+52-1=38,38+72=87,87+92-1=167.

 

4681, 13/22/35/4( ) 

A.4/5B.7/7C.6/7D.1/5

分析:a。(11)(3/22/3)(5/44/5)括号内的数互为倒数关系

 

469041547( )

A64 B 94 C 58 D 142

分析:D0×3+4=4, 4×3+3=15,15×3+2=47,47×3+1=142

 

470-11329( )

A841B843C24389D24391

分析:D。前个数的立方加2=后个数

 

471014112657,( )

 A247B200C174D120

分析:D。后项-前项作差=>1,3,7,15,31,63 后项-前项=>2481632等比。

 

472-131958106165,()。

A189B198 C232D237

分析:D。二级等差。(即作差2次后,所得相同)

 

47379-15,()

A3B-3C2D-1

分析:B7+9=16 9+-1=8,-1+5=4,5+-3=2,其中16842等比

 

474212/31/2,()

A3/4 B1/4 C2/5 D5/6

分析:C。数列可化为4/24/44/64/8,分母都是4,分子2468等差,所以后项为4/10=2/5

 

47542236,()

A6 B8 C10 D15

分析:D2/4=0.52/2=13/2=1.56/3=20.511.5, 2等差,所以后项为2.5×6=15

 

47617857,()

A123 B122 C121 D120

分析:C12+7=872+8=5782+57=121

 

47702242523120,()

A.7776B.1290C.46650D.1296

分析:c0+1=1--132+2=4--22,24+3=27--33,

252+4=256--44,3120+5=3125--55,64-6=46656-6=46650

 

47820/94/37/94/91/4,()

分析:答案5/36。依次化为80/3648/3628/3616/369/36。看分子:8048281692级等差数列。相减得3220127;再减1285;再减得43则下一个为2。所以是5/36

 

4791.5371/2221/2( )

分析:答案315/41.5, 3, 71/2, 221/2 , 315/4 =>3/2,6/2,15/2,45/2,(157.5)/2,其中3,6,15,45,157.5 =>后项/前项=>22.533.5等差

 

48031374143( )53

A.51B.45C.49D.47

分析:D

思路一:连续的质数列

思路二:31+53=37+47=41+43=84

 

481184129920( )43  

A.8B.11C.30D.9

分析:D。奇数项18,12,9,9二级等差,偶数项4,9,20,43=>4×2+1=9,9×2+2=20,20×2+3=43

 

48212526( )

A.31B.51C.81D.677

分析:D。前项平方+1=后项

 

483151854,(),210  

A.106B.107C.123D.112

分析:C。都是3的倍数

 

4848101418( ),

A.24B.32C.26D.20

分析:A。两两相加=>18243242二级等差

 

485412810,()

A6B8C9D24

分析:C(4+12)/2=8(12+8)/2=10(8+10)/2=9

 

486 8101418( )

A.24B.32C.26D.20

分析:C8×2-61010×2-61414×2-101818×2-1026

 

4872482488( )

A.344B.332C.166D.164

分析:A4-228-4424-81688-24644×41616×464 64×425688+256344

 

488041547,()。

A64B 94C 58D 142

分析:D。数列的2级差是等比数列。

 

489-131958106165,()。

A189B198C232D237

分析:D3级等差数列

 

490-11329,()。

A841B843C24389D24391

分析:D。后项=前项的立方+2

 

491014112657,()。

A247B200C174D120

分析:D。数列的2级差是等比数列。即014112657120 作差=>1,3,7,15,31,63 作差=>2,4,8,16,32

 

492161736111448,()

A2472B2245C1863D1679

分析:B17=16×1+136=17×2+2111=36×3+3448=111×4+42245=448×5+5

 

493152854( )210 

A.100B.108C.132D.106

分析:D。第一项×2-2=第二项

 

4942/31/23/7718,()

A.5/9B.4/11C.313D.25

 分析:B。依次化为4/65/106/147/18,分子依次4567等差;分母是公差为4的等差数列

 

49523101526,()

A29B32C35 D37

分析:C12+1=2,22-1=3,32+1=10,42-1=15,52+1=26,62-1=35

 

4960123496( )

A.8B.12C.21D.27

分析:D。奇数项0,2,4,6等差;偶数项1,3,9,27等比。

 

49710560985691528448( )2112 

A7742B7644C6236D74

分析:D。(10560)(9856)(9152)( 8448 ( ?,?) 2112=>每组第一个构成公差为7的等差,每组第二个构成公差为4的等差。因此?和?=>74,即代表了前面数列的公差,按照上述的规律可以得到2112。即从84482112中间的数字被省略掉了。

 

498O41848100( )

A.140B.160C.180D.200

分析:c

思路一:3次,得出数列:101622,?,都是相差6,所以?=>2828+52+100=180

思路二:n的立方依次减去041848100后得到的是n的平方。具体:1立方-0=1平方,2立方-4=2平方,3立方-18=3平方,4立方-48=4平方,5立方-100=5平方,可推出,6立方-多少=6平方

 

499-2761922( ) 

A.33B.42C.39D.54

分析:c-2=1的平方减37=2的平方加36=3的平方减319=4的平方加322=5的平方减339=6的平方加3

 

500443-2,()

A.-3B.4C.-4D.-8

分析:A。首尾相加=>321等差

 

50188122460( )

A.90B.120C.180D.240

分析:c。分3=>(8,8),(12,24),(60,180),每组后项/前项=>123等差

 

5021371741,()

A.89B.99C.109D.119

分析:B。第一项+第二项*2=第三项

 

5030129( )

A.12B.18C.28D.730

分析:D。第一项的3次方+1=第二项

 

50437, 47, 2207( )

分析:答案4870847。前一个数的平方-2=后一个数

 

5052, 7, 16, 39, 94, ( )

分析:答案2577×2+2=1616×2+7=3939×2+16=9494×2+39=257

 

5061944, 108, 18, 6, ( )

分析:答案31944/108=18108/18=618/6=3

 

5073, 3, 6, ( ), 21, 33, 48

分析:答案12

思路一:差是:03,?,?,1215,差的差是3,所以是6+6=12

思路二:3×1=3,3×1=3, 3×2=6, 3×7=21,3×11=33,3×16=48112471116依次相减为012345

 

5081.5, 3, 71/2, 221/2( )

分析:答案78.753/26/215/245/2,?/2,倍数是22.533.545×3.5=157.5。所以是157.2/2=78.25

 

5091128, 243, 64, ( )

分析:答案5 19=127=12835=24343=6451=5

 

510541149329( )

分析:答案58102+5=562+5=41122+5=149182+5=329242+5=581

 

511013821( )

分析:答案551=(0×2)+13=(1×2+0)+18=(3×2+1+0)+121=(8×2+3+1+0)+1X=(21×2+8+3+1+0)+1=55

 

5123281228,()

A15 B32 C27 D52

分析:D

思路一:32)+38,(328)-112,(32812)+328,(3281228)-152

思路二:3×2+2=82×2+8 =128×2+12=2812×2+28=52

 

5137101622,()

A28 B32 C34 D45

分析:A1073167922715X721,所以X28

 

5143461236,()

A.8B.72C.108D.216

分析:D3×4/2=64×6/4=126×12/2=3612×36/2=216

 

51520/94/37/94/91/4,()

分析:答案5/3620/94/37/94/91/4,(5/36=>80/36,48/36,28/36,16/36,9/36,5/36分母都为36,即等差。分子80,48,28,16,9,5三级等差。

 

5161894,(),1/6  

A.3B.2C.1D.1/3

分析:C1=14,8=23,9=32,4=41,1=50,1/6=6(-1)

 

517412810,()

 A6 B8 C9 D24

分析:C(4+12)/2=8(12+8)/2=10(8+10)/2=9

 

5181/211,(),9/1111/13 

A2B3C1D7/9

分析:C。化成 1/2,3/3,5/5 (),9/11,11/13这下就看出来了只能是(7/7)注意分母是连续质数列,分子等差。

 

5191335791315,(),()

A1921B1923C2123D2730

分析:C133579131521),(30=>奇偶项分两组137132135915231371321=>作差2468等差;3591523=>作差2468等差

 

5201944108186( )

A.3B.1C.-10D.-87

分析:A。前项除以后一项等于第三项

 

521914340( )

A81B80C120D121

分析:答案121。每项除以3=>取余数=>011011

 

52213141621,(),76 

A23B35 C27 D22

分析:B

思路一:13141 14162 162151×3-1=22×3-1=55×3-1=1414×3-1=41,所以21+14=3535+41=76

思路二:相临两数相减=1251441。再相减=13927=30123次方

 

5232/31/42/5,(),2/71/16 

A1/5B1/17C1/22D1/9

分析:D。奇数项的分母是3 5 7分子相同,偶数项是分子相同分母是2的平方 3的平方 4的平方

 

524382448120,()

A168B169C144D143

分析:A3=22-18=32-124=52-148=72-1120=112-1,得出235711都是质数,那么132-1=168

 

5250418,(),100

A.48B.58C.50D.38

分析:A041848100=>作差=>4143052=>作差=>101622等差

 

526134816( )

A.26B.24C.32D.16

分析:C1+3=41+3+4=8 1+3+4+8=32

 

5276535173( ) 

 A.1B.2C.0D.4

分析:A65=8×8+135=6×6-117=4×4+13=2×2-11=0×0+1 

 

52821613,()

A.22B.21C.20D.19

分析:A1=1×2-16=2×3+013=3×4+1?=4×5+2=22

 

5295669( )90  

A.13B.15C.18D.21

分析:C(5-3)(6-3)=6(6-3)(6-3)=9(6-3)(9-3)=18(9-3)(18-3)=90?=18

 

5305766-975,()

A. 80B. -84C. 91D.-61

分析:B57-66=-966-(-9)=75-9-75=-84,就是第三项等待第一项减于第二项

 

531512243652( )

A58B.62C.68D.72

分析:C5=2+312=5+7 24=11+13 36=17+19 52=23+29 ,全是从小到大的质数和,所以下一个是31+37=68

 

5321291077317,-72,()

分析:答案-217129-107=22107-73=3473-17=5617-(-72)=89;其中22,34,56,89第一项+第二项=第三项,则56+89=145-72-145=-217

 

5332-1-1/2-1/41/8( )  

A.-1/10B.-1/12C.1/16D.-1/14

分析:C(2,-1)(-1,-1/2)(-1/2,-1/4)(1/8,())===>每组的前项比上后项的绝对值是 2

 

5342103068,()

分析:答案13013+1=223+2=1033+3=3043+4=6853+5=130

 

535-734( )11  

A-6B7C10D13

分析:b11-((-7)的绝对值)=47-(3的绝对值)=4,而4 是中位数

 

53601726266,()

A.8B.6C.4 D.2

分析:C

思路一:每项个位数 -- 十位=>0,6,4,4,6,4=>分三组=>(0,6),(4,4),(6,4)=>每组和=>6810等差

思路二:0=>017=>7-1=626=>6-2=426=>6-2=46=>6?=>?。得出新数列:06446,?。0+6-2=46+4-6=44+4-2=64+6-6=??=>4

 

5376133269,()

A.121B.133C.125D.130

分析:d

思路一:13-6=732-13=1969-32=3771937均为质数,130-69=61 也为质数。其他选项均不是质数。

思路二:数列规律是偶奇偶奇偶

思路三:13+5=6,23+5=13,33+5=32,43+5=69,53+5=130

 

538152759,(),103 

A.80B.81C.82D.83

分析:b15-5-1=927-2-7=1859-5-9=45XY-X-Y=?103-1-3=99;成为新数列91845?99 4个都除9,得新数列25()11为等差,()8 时是等差数列,得出?=8×9=72 所以答案为B,81

 

539325/33/2( )

A.7/5B.5/6C.3/5D.3/4

分析:a

思路一:3/14/25/36/4,下一个就是7/5

思路二:相邻差是1/1,1/3,1/6,1/10.分子是1,分母差是个数列

 

54012335,()

A.70B.108C.11000D.11024

分析:d。(1×2)得平方-13,(2×3)得平方-135,所以(3×35)得平方-1=?

 

5412591937,()

A.59B.74C.73D.75

分析:d2×2152×5192×91192×191372×37175

 

5421315,()

分析:答案255

思路一:可以这样理解,3=(11)的平方-115=(31)的平方-1255=(151)的平方-1

思路二:21-1=122-1=324-1=161,2,4是以2为公比的等比数列,那么下一个数就是8,所以,28-1=255

 

5431/31/151/35,()

分析:答案1/63。分母分别是 1x33x55x77x9,其中13579连续奇数列

 

544151015( )

分析:答案30。最小公倍数。

 

545165140124,(),111

A135B150C115D200

分析:c165-140=25=52140-124=16=42124-?=9=32?-111=4=22

 

54612469,( )18 

A.11B.12C.13D.14

分析:c1+2+1=42+4+0=64+6-1=96+9-2=139+13-4=18,其中,1,0,-1,-2,-4首尾相加=>-3,-2,-1等差。

 

5478101418,()

A. 24B. 32C. 26D. 20

分析:c

思路一:两两相加得8+10=1810+14 =2414+18=3218+26=4418 24 32 44 相差的6 8 10 等差。

思路二:两两相减=>2,4,4,8=>分两组=>(2,4),(4,8)每组后项/前项=2

 

5484591834,()。

A. 59B. 37C. 46D. 48

分析:a。该数列的后项减去前项得到一个平方数列,故空缺处应为34+2559

 

54913261119,()。

A. 24B. 36C. 29D. 38

分析:b。该数列为和数列,即前三项之和为第四项。故空缺处应为6+11+1936

 

55048142232,()。

A. 37B. 43C. 44D. 56

分析:c。该数列为二级等差数列,即后项减去前项得到一等差数列,故空缺处应为32+1244

 

551282785,()。

A. 160B. 260C. 116D. 207

分析:b。该数列为倍数数列,即an3an-1+n,故空缺处应为3×85+5260

 

5521131356,()。

A. 1B. 2C. 4D. 10

分析:d。该数列为数字分段组合数列,即(11),(31),(35),它们之和构成倍数关系,故空缺处应为2×8-610

 

5531/21/32/36/3( )54/36  

A.9/12B.18/3C.18/6D.18/36

分析:c。后项除以前项=第三项。2/3=1/3除以1/26/3=2/3除以1/3;以此类推

 

55412/35/9,(),7/154/9  

分析:答案1/212/35/9,(  ),7/154/9 =>3/3 4/6 5/9 6/12 7/15 8/18分子分母等差。

 

55535170111534,()

A1930B1929C2125D 78

分析:b。每项各位相加=>8,8,8,7,21 首尾相加=>8,15,29 第一项×2-1=第二项

 

556216,(),65536

A1024B256C512D2048

分析:c21,24 ,2(),216 ==> 1 , 4, () , 16 ===>929=512

 

557011011100101110,(),1000 

A001B011C111D1001

分析:c。是二进制的1 ,2 ,3 ,4,5,6,7,8 ===>选择c

 

55837472207( )

分析:答案487084732-2=772-2=47472-2=220722072-2=4870847

 

5593 71641( )

分析:答案777-3=4=2216-7=9=3241-16=25=52(77)-41=36=6

 

5601/21/81/24, 1/48( )

分析:答案1/48。分子都是1。分母的规律是后一项的分母除于前一项的分母是自然数列,:8/2=424/8=348/24=2( )/48=1,解得48,合起来就是1/48

 

5612, 7, 16, 39, 94( )

分析:答案22716=7×2+239=16×2+794=39×2+16?=94×2+39?=227

 

5621128, 243, 64( )

分析:答案519=127=12835=24343=6451=??=>5

 

56321/25121/2371/2,()

分析:答案1311/4。后一项依次除以前一项:22.533.5。所以?=37.5×3.5=131.25

 

5643, 3, 6( )2133, 48

分析:答案12。后项-前项=>等差   03691215

 

5651103170133( )

A.136B.186C.226D.256

分析:c23+233+443+653+863+10=226 C

 

566282464,()

A88B98C159D160

分析:d

思路一:2×2482×88242×2416642×64+32=160

思路二:2=1x28=2×424=3×864=×16160=5×32

 

56712964,()

A250B425C625D650

分析:c10213243(54)=625

 

5681.53.57.5( )13.5 

A9.3B9.5C11.1D11.5 

分析:d。每个数小数点前后相加分别为,15635875121151613518。以12为中位,则6182×128162×12

 

 5696596105( )

A23B15C90D46

分析:b。分4=>(6   5)(9   6)(10   5)(15  8)=> 65196310551587其中1357等差

 

570256269286302,()

A.254 B.307 C.294 D.316   

解析:2+5+6=13 256+13=2692+6+9=17269+17=286

2+8+6=16286+16=302?=302+3+2=307

 

57172362418( )

A.12B.16C.14.4D.16.4

解析:

(方法一)

相邻两项相除

   72     36      24      18

    \    /  \     /  \    /

    2/1    3/2     4/3(分子与分母相差1且前一项的分子是后一项的分母)接下来貌似该轮到5/4,18/14.4=5/4. C

(方法二)

6×12=726×6=366×4=246×3 =186×X现在转化为求X

12643X12/6 6/4 4/3 3/X化简得2/13/24/33/X,注意前三项有规律,即分子比分母大一,则3/X=5/4,可解得:X=12/5再用6×12/5=14.4

 

5728101418,(),

A. 24B. 32C. 26D. 20

分析:8101418分别相差244,?可考虑满足2/4=4/?则?=8,所以,此题选18826

 

573311132931,()

A.52B.53C.54D.55

分析:奇偶项分别相差11382913168×2,?-31248×3则可得?=55,故此题选D

 

574-2/51/5-8/750,()。

A.11/375B.9/375C.7/375D.8/375

解析:-2/51/5-8/75011/375=>4/(-10)1/58/(-750)11/375=>分子 41811=>头尾相减=>77,分母 -105-750375=>2(-10,5)(-750,375)=>每组第二项除以第一项=>-1/2,-1/2,所以答案为A

 

5751688122460( )

A.90B.120C.180D.240

分析:后项÷前项,得相邻两项的商为0.511.522.53,所以选180

 

576 236917,( 

A.18B.23C.36D.45

分析:6+9=15=3×53+17=20=4×5,那么2+?=5×5=25,所以?=23

 

577325/33/2,()

A.7/5B.5/6C.3/5D.3/4

分析:通分 3/14/25/36/4 ----7/5

 

578 2022253037,()

A.39B.45C.48D.51

分析:它们相差的值分别为2357。都为质数,则下一个质数为11,则37+1148

 

579 31011( )127

A.44B.52C.66D.78

解析:3=13+210=23+211=32+266=43+2127=53+2,其中,指数成33233规律

 

5801913161613191022,()

A.724B.725C.526D.726

解析:1913161613191022每个数字的前半部分和后半部分分开。即将1913分成1913。所以新的数组为,(1913),(1616),(1319),(1022),可以看出191613107递减3,而1316192225递增3,所以为725

 

581 12/35/9( )7/154/94/9

A.1/2B.3/4C.2/13D.3/7

解析:1/1 2/3 5/91/2 7/154/94/9=>规律以1/2为对称=>1/2左侧,分子的2-1=分母;在1/2时,分子的2=分母;在1/2右侧,分子的2+1=分母

 

58255143887,(

A.167B.168C.169D.170

解析:前三项相加再加一个常数×变量;(即:N1是常数;N2是变量,a+b+c+N1×N2),5+5+14+14×1=3838+87+14+14×2=167

 

583),36191052

A.77B.69C.54D.48

解析:5-2=310-5=519-10=936-19=175-3=29-5=417-9=8,所以X-17应该=1616+17=33 为最后的数跟36的差 36+33=69,所以答案是 69

 

584 12529,(

A.34B.846C.866D.37

解析:5=22+12 29=52+22( )=292+52,所以( )=866,c

 

585 -2/51/5-8/750,(

A.11/375B.9/375C.7/375D.8/375

解析:1/5化成5/25。先把1/5化为5/25,之后不论正负号,从分子看分别是:258,即:5-2=38-5=3,那么?-8=3,?=11,所以答案是11/375

 

586 1/31/61/22/3,(

解析:1/3+1/6=1/21/6+1/2=2/31/2+2/3=7/6

 

5873811910,()

A.10B.18C.16D.14

解析:答案是A 3, 8, 11, 9, 10, 10=>从第二项开始,第一项减去第一项,分别为5867、(7=>5+8=6+78+6=7+7

 

5884311293175( )

A.12B.13C.14D.15

解析:本题初看较难,亦乱,但仔细分析,便不难发现,这是一道三个数字为一组的题,在每组数字中,第一个数字是后两个数字之和,即4=3+112=9+3,那么依此规律,( )内的数字就是17-5=12故本题的正确答案为A

 

58919418316117( )

A.5B.4C.3D.2

解析:本题初看较难,亦乱,但仔细分析便可发现,这是一道两个数字为一组的减法规律的题,19-4=1518-3=1516-1=15,那么,依此规律,( )内的数为17-2=15。故本题的正确答案为D

 

59049/80047/4009/40( )

A.13/200B.41/100C.1/100D.43/100

解析:

方法一:49/80047/4009/40, 43/100=>49/80094/800180/800344/800=>分子 499418034449×2-4=9494×2-8=180180×2-16=344;其中4816等比

方法二:9/40通分=45/200,分子49474543,分母800400200100

 

591 6143062( )

A.85B.92C.126D.250

解析:本题仔细分析后可知,后一个数是前一个数的2倍加214=6×2+230=14×2+262=30×2+2,依此规律,( )内之数为62×2+2=126。故本题正确答案为C

 

5921222314271183234010( )4  

A.4 B.3C.2D.1

解析:本题初看很乱,数字也多,但仔细分析后便可看出,这道题每组有四个数字,且第一个数字被第二、三个数字连除之后得第四个数字,即12÷2÷2=314÷2÷7=118÷3÷2=3,依此规律,( )内的数字应是40÷10÷4=1。故本题的正确答案为D

 

5932310152635( )

A.40 B.45 C.50 D.55

解析:本题是道初看不易找到规律的题,可试着用平方与加减法规律去解答,即2=12+13=22-110=32+115=42-126=52+135=62-1,依此规律,( )内之数应为72+1=50。故本题的正确答案为C

 

59479-15( )

A.3B.-3C.2D.-1

解析:7,9,-1,5,(-3)=>从第一项起,(第一项第二项)×(1/2)=第三项

 

59537472207( )

A.4414B 6621C.8828D.4870847

解析:本题可用前一个数的平方减2得出后一个数,这就是本题的规律。即7=32-247=72-222072-2=4870847,本题可直接选D,因为ABC只是四位数,可排除。而四位数的平方是7位数。故本题的正确答案为D

 

5964113067( )

A.126B.127C.128D.129

解析:这道题有点难,初看不知是何种规律,但仔细观之,可分析出来,4=13+311=23+330=33+367=43+3,这是一个自然数列的立方分别加3而得。依此规律,( )内之数应为53+3=128。故本题的正确答案为C

 

597 566/51/5( )

A.6B.1/8C.1/30D.6/25

解析:头尾相乘=>6/56/56/5=>D

 

598 566/51/5( )

A.6B.1/6C.1/30D.6/35

 

解析:后项除以前项:6/5=6/5 1/5=(6/5)/6 ;( )=(1/5)/(6/5);所以( )=1/6,B

 

5992224273239( )

A.40B.42C.50D.52

解析:本题初看不知是何规律,可试用减法,后一个数减去前一个数后得出:24-22=227-24=332-27=539-32=7,它们的差就成了一个质数数列,依此规律,( )内之数应为11+39=50。故本题正确答案为C

 

6002/515/5110/5117/51( )

A.15/51B.16/51C.26/51D.37/51

解析:本题中分母相同,可只从分子中找规律,即251017,这是由自然数列1234的平方分别加1而得,( )内的分子为52+1=26。故本题的正确答案为C

 

60120/94/37/94/91/4( )

A.5/36B.1/6C.1/9D.1/144

解析:这是一道分数难题,分母与分子均不同。可将分母先通分,最小的分母是36,通分后分子分别是20×4=804×12=487×4=284×4=161×9=9,然后再从分子804828169中找规律。80=(48-28)×448=(28-16)×428=(16-9)×4,可见这个规律是第一个分子等于第二个分子与第三个分子之差的4倍,依此规律,( )内分数应是16=(9-?)×4,即(36-16)÷4=5。故本题的正确答案为A

 

602 234648965410899( )

A.200B.199C.198D.197

解析:本题的每个双数项都是本组单数项的2倍,依此规律,( )内的数应为99×2=198。本题不用考虑第2与第3,第4与第5,第6与第7个数之间的关系。故本题的正确答案为C

 

6031.12.24.37.411.5( )

A.155B.156C.158D.166

解析:此题初看较乱,又是整数又是小数。遇到此类题时,可将小数与整数分开来看,先看小数部分,依次为0.10.20.30.40.5,那么,( )内的小数应为0.6,这是个自然数列。再看整数部分,即后一个整数是前一个数的小数与整数之和,2=1+14=2+27=4+311=7+4,那么,( )内的整数应为11+5=16。故本题的正确答案为D

 

6040.750.650.45( )

A.0.78B.0.88C.0.55D.0.96

解析:在这个小数数列中,前三个数皆能被0.05除尽,依此规律,在四个选项中,只有C能被0.05除尽。正确答案为C

 

605 1.168.2527.3664.49( )

A.65.25B.125.64C.125.81D.125.01

解析:此题先看小数部分,16253649分别是4567自然数列的平方,所以( )内的小数应为8.2=64,再看整数部分,1=138=2327=3364=43,依此规律,( )内的整数就是5.3=125。正确答案为B

 

606232( )6

A.4B.5C.7D.8

解析:由于第22的平方=4,所以,这个数列就成了自然数列234( )6了,内的数应当就是5了。故本题的正确答案应为B

 

6072516( )4  

A.2B.3C.3D.6

解析: 25=516=44=254( )2是个自然数列,所以( )内之数为3。正确答案为C

 

6081/22/53/104/17( )

A.4/24B.4/25C.5/26D.7/26

解析:该题中,分子是1234的自然数列,( )内分数的分子应为5。分母251017一下子找不出规律,用后一个数减去前一个数后得5-2=310-5=517-10=7,这样就成了公差为2的等差数列了,下一个数则为9( )内的分数的分母应为17+9=26。正确答案为C

 

609 -26-1854( )

A.-162B.-172C.152D.164

解析:在此题中,相邻两个数相比6÷(-2)=-3(-18)÷6=-354÷(-18)=-3,可见,其公比为-3。据此规律,( )内之数应为54×(-3)=-162。正确答案为A

 

61079-15( )

A.3B.-3C.2D.-1

解析:选A7,9,-1,5,(-3)=>从第一项起,(第一项第二项)×(1/2)=第三项

 

611566/51/5( )

A.6B.1/6C.1/30D.6/25; 

解析:头尾相乘=>6/56/56/5,选D

 

6122123680150( )

A.250B.252C.253D.254

解析:2=2×1212=3×2236=4×3280=5×42150=6×52,依此规律,( )内之数应为7×62=252。正确答案为B

 

6130678,(),15620

A.240B.252C.1020D.7771

解析:0=1×1-16=2×2×2-278=3×3×3×3-3?=4×4×4×4×4-415620=5×5×5×5×5×5-5;答案是1020 C

 

614 5102665145,(

A.197B.226C.257D.290

分析:22+1=532+1=1052+1=2682+1=65122+1=145172+1=290;纵向看23581217之间的差分别是12345

 

615

解析:观察可知,繁分数中共有12个分母数字较大的分数,按常规的通分方法显然行不通。若取最大值和最小值来讨论算式的取值范围,也较找出算式的整数部分。

    因此,S的整数部分是165

 

6166535173,( )3

A7B5C1D0

解析:选C82+162-142+122-102+1-22-1

 

617 2389432,(

A3B1C0D-1

解析:选A取前三个数,分别提取个位和百位的相同公约数列在后面。

 

6183/75/85/98/117/11,(

A.11/14B.10/13C.15/17D.11/12

解析:每一项的分母减去分子,之后分别是: 7-3=4 8-5=3 9-5=4 11-8=3 11-7=4;从以上推论得知:每一项的分母减去分子后形成一个43的循环数列,所以推出下一个循环数必定为3,只有A选项符合要求,故答案为A

619 12469( )18

A.11B.12C.13D.14

解析:1+2+4+6-2×2=9;(2+4+6+9-2×4=13;(13+6+9+4-2×8=18;所以选C

 

620 11035,(

A.11B.9C.12D.4

分析(一):两两相比,1/10,3/5通分,1/10,6/10,下组应该是11/10,故答案A;(二):要把数字变成汉字,看笔画11035、(4),                                   一、十、三、五、四

 

62112529,()

A.34B.846C.866D.37

解析:5=22+12  29=52+22( )=292+52;所以( )=866,C

 

6221216910( )

A13B12C19D17

解析:1+2+1=4=2平方;2+1+6=3平方;1+6+9=4平方;6+9+10=5平方;9+10+(?)=6平方;答案:17

 

6231/21/61/121/30,()

A.1/42B.1/40C.11/42D.1/50

解析:主要是分母的规律,21×2,62×3,123×4,305×6,?=6×7,所以答案是A

 

62413141621,(),76

A23B35C27D.22

解析:按奇偶偶排列,选项中只有22是偶数,所以选D.

 

6251, 2, 26315, 3, 21, 4,

A.46B.20C.12D.44

解析:2/1=26/2=315/3=521/3=744/4=11

 

626 3, 2, 3, 7, 18, ( )

A47B24C36D70

解析:第一项和第三项的和为中间项的三倍

 

62745,(),40104

A.7  B.9  C.11 D.13

解析:5-4=13104-40=43,由此推断答案是13,因为:13-5=8,是2的立方;40-13=27,是3的立方,所以答案选D

 

628 012241412016,(

A280B32 C64D336

解析:选D奇数项 1的立方-1 3的立方-3 5的立方-5 7的立方-7

 

629 3716107( )

A121B169C1107D1707

解析:答案是D,第三项等于前两项相乘减516×107-5=1707

 

630 11038102,(

A221B223C225D227

解析:C2×2-34×4-67×7-1111×11-1916×16-31361119316331165191183119125328531284

 

631 02247120,(),195

A121B125C169D181

解析:2571113 的平方分别-4-3-2-10-1,所以答案是169,选C

 

632113067,(

A128B134C169D171

解析:2的立方加3 3的立方加3...答案是128,选A

 

633 1029610884132,(

A121B81C36D25

解析:选C依次相差-6+12-24+48、(-96)所以答案是 36

 

634132816425,(),11/8

A8B7C6D2

解析:1625344352、(61)、718-1。答案是6 ,选C

 

635 -2-8064,(

A121B125C250D252

解析:13×(-2)=-2 23×(-1)=-8 33×0=0 43×1=64答案:53×2=250 ;选C

 

636 2313175,(

A30651B36785C53892D67381

解析:(从第三项开始,每一项等于前面一项的平方与前前一项的2倍的和。 C=B2+2×A );13=32+2×2175=132+2×3;答案: 30651=1752+2×13,选A

 

637012241412016,(

A280B32C64D336

解析:奇数项 1的立方-13的立方-35的立方-57的立方-7

 

638161736111448,(

A.639B.758C.2245D.3465

解析:16×1=16 16+1=1717×2=34 34+2=3636×3=108 108+3=111111×4=444 444+4=448448×5=2240 2240+5=2245

 

639 5669,(),90

A.12B.15C.18D.21

解析:6=5-3)×(6-3); 9=6-3)×(6-3); 18=6-3)×(9-3); 90=9-3)×(18-3)

 

64055667882,(

A.98B.100C.96D.102

解析:56-5-6=45=5×966-6-6=54=6×9 78-7-8=63=7×9 82-8-2=72=8×9 98-9-8=81=9×9

 

641 11345169( )

A.443B.889C.365 D.701

解析:选B

1   0+11

      4   13的各位数的和1+34

      9   45的各位数4+59

      16  169的各位数1+6+916

     25  B选项的8898+8+9=25)得25

 

642 252012-8,(),10

A.7B.8C.12D.-8

解析:本题规律:2+10=1220+-8=1212;所以5+7=12,首尾2项相加之和为12

 

643594048( )3718

A.29B.32C.44D.43

解析:第一项减第二项等于19;第二项加8等于第三项;依次减198下去;

 

6441216910( )

A.13 B.12C.19D.17

解析:1+2+1=4=2平方;2+1+6=3平方;1+6+9=4平方;6+9+10=5平方;9+10+()=6平方;答案17

 

6451/35/92/313/21( )

A.6/17B.17/27C.29/28D.19/27

解析:1/3,5/9,2/3,13/21,(17/27)=>1/3,5/9,12/18,13/21,(17/27)每项分母与分子差=>246810等差

 

646 1216910( )

  A.13B.12 C.19D.17

解析:1+2+1=42+1+6=91+6+9=166+9+10=259+10+17=36

 

647 12/35/9( )7/154/9

A1/2B6/11C7/12D7/13

解析:选A3/3 , 4/6 , 5/9 , (6/12) , 7/15 , 8/18

 

648-70129( )

A10B11C27D28

解析:选D-7等于-2的立方加1,0等于-1的立方加1,1等于0的立方加1,2等于1的立方加1,9等于2的立方加1,所以最后空填3的立方加1,28

 

64922838,()

A.76B.81C.144D.182

解析:后项=前项×5-再前一项

 

650632670,-2,-9,(

A-10B-11C-27D-28

解析:选D63=43-126=33-17=23-10=13-1-2=(-1)3-1-9=(-2)3-1(-3)3-1=-28

 

651 013821,(

A25B27C55D56

解析:选C1×3-0=33×3-1=88×3-3=2121×3-8=55

 

652 0.0030.060.912,()

A15B18C150D180

解析:选C0.003=0.003×10.06=0.03×20.9=0.3×312=3×4;于是后面就是30×5150

 

653 17857,(

A64B121C125D137

解析:选B12+7=872+8=5782+57=121 

 

654 412810,(

A9B11C15D18

解析:选A412/2=8;(128/2=10;(810/2=9

 

655 3461236,(

A81B121C125D216

解析:选D后面除前面,两两相除得出4/3, 3/2, 2, 3X,我们发现A×BC于是我们得到X2×36于是36×6216

 

65652561113,(

A125B181C225D226

解析:25-52061-252016113-613616x-113=52+16;所以X=181,选B

 

657 914340,(

A.81B.80C.121D.120

解析:除于三的余数是011011;答案是121

 

65855143887,(

 A.167B. 168 C.169D. 170

解析:5+11155+321414+5213838+728787+921167

 

   659 151949109( )

    A.170B.180C.190D.200

    解析:19-5+1=15    -=21

    49-19+(5+1)=36    -=49

    109-49+(19+5+1)=85    -=70 70=21+49

    ?-109+(49+19+5+1)=   =155

    ?=155+109-(49+19+5+1)=190

 

660 4/914/3( )1236

A2/3B2C3D6

解析:选D4/9 × 36 =161×12 =12 4/3×x=8==>x=6

 

661 27163994,(

A.227    B.237    C.242   D.257

解析:第一项+第二项×2 =第三项,选A

 

    66226-6246,(

    A.8B.10C.12D.14

解析:D-33次加1,-23次加2,-13次加3,03次加4, 13次加5,23次加6

 

663112824364,(

A.121.5B.1/6C.5D.1/3

解析:19次方,27次方,35次方,6的三次方,后面应该是5的一次方,所以选C

 

6645143887,(

A.167B.168C.169D.170

解析:5+12155+321414+5^213838+7^287 87+9^21167;所以选A

 

665123746,(

A.2109B.1289C.322D.147

解析:22-1=332-2=772-3=46462-7=2109

 

66601382263,(

A121B125C169D185

解析:选D1×3-0=33×3-1=88×3-2=2222×3-3=6363×3-4=185

 

6675669,(),90

A.12B.15C.18D.21

解析:(5-3)×(6-3)=6......(6-3)×(9-3)=18C

 

668 290466857,(

A.65B.625C.63D.62

解析:前两项之和除以2为第三项,所以答案为62.5

 

669 2026355071( )

A.95B.104C.100D.102

解析:前后项之差的数列为691521 分别为3×23×33×53×7 ,则接下来的为3×113371+33104B

 

670184129920( )43

A.8B.11C.30D.9

解析:奇数项,偶数项分别成规律。偶数项为4×2+199×2+220 20×2+343,答案所求为奇数项,奇数项前后项差为63,等差数列下来便为0。则答案为9,选D

 

67110318063( )5

解析:0-(-1)=1=1631-(-1)=32=2580-(-1)=81=3463-(-1)=64=4324-(-1)=25=525-(-1)=6=61;选B

 

67238112071,(

A.168B.233C.91D.304

解析:把奇数项和偶数项分开看:3,11,71的规律是:(3+1)×3=11+1 (11+1)×6=71+18,20,168的规律可比照推出:2×8+4=20 20×8+8=168

 

673 220799( )

A.13B.12C.18D.17

解析:前三项之和分别是2,3,4,5的平方,所以C

 

674),3681169

A.16B.27C.8D.26

解析:分别是4,6,9,13的平方,即后项减前项分别是2,3,4的一组等差数列,A

 

67532+62+122+242+42+82+162+322

A.2225B.2025C.1725D.2125

解析:由勾股定理知 32+ 42 = 52 , 62 + 82 =102122+ 162=202 242+322 = 402,所以: 32+62+122+242+42+82+162+322=>52+102+202+402=>25+100+400+1600=2125

 

676 184129920,(),43

A9B23C25D36

解析:选A两个数列18129,(); 492043,相减得第3个数列:630所以:()=9

 

677 572125,(

A.30B.31C.32D.34

解析:25=21+5-1 ?=25+7-1

 

678 1894( )1/6

A.3B.2C.1 D.1/3

解析:14 23 32 41 50 6-1

 

679162716( )1

A.5B.6C.7D.8

解析:2 33  42  51  60

 

680 236918( )

A27B45C49D56

解析:选B题中数字均+3,得到新的数列:5691221,()+3,6-5=19-6=312-9=321-12=9,可以看出()+3-21=3×9=27,所以()=27+21-3=45

 

681 13461119( )

A21B23C25D34

解析:3-1=24-3=16-4=211-6=5 19-11=8,得出数列:2125815 2+1+2=5 1+2+5=82+5+8=15,故()=34,选D

 

682 129121,(

A.251B.441C.16900D.960

解析:选C前两项和的平方等于第三项。 (1+2)2=9(2+9)2=121(121+9)2=16900

 

683 5669,(),90

A.12B.15C.18D.21

解析:选C(5-3)(6-3)=6(6-3)(9-3)=18(18-3)(9-3)=90;所以,答案是18

 

684 1126,()

A.19B.27 C.30D.24

解析:选D后一数是前一数的1234倍。答案是24

 

685-2-115( )29

A7B9C11D13

解析:选D 20次方减3等于-221次方减3等于-122次方减3等于123次方减35,则24次方减3等于13

 

686 311132931,()

A33B35C47D53

解析:选D2的平方-13的平方+24的平方-35的平方+46的平方-5;后面的是7的平方+6了;所以答案为53

 

68755143887,(

A.167B.68C.169D.170

解析:选A它们之间的差分别为0 9 24 490=1的平方-19=3的平方;24=5的平方-149=7的平方;所以接下来的差值应该为9的平方-1=8087+80=167;所以答案为167

 

688 1029610884132( )

A144B121C72D36

解析:选D102-96=696-108=-12108-84=2484-132=-48132-X=96, X=36

 

689062460120,(

A125B169C210D216

解析:选C0=13-16=23-2 24=33-3 60=43-4120=53-5 210=63-6

 

690 18942( )1/6

A.3B.2C.1D.1/3

解析:选D18/9=24/2=21/3除以1/6=2

 

6914.53.52.85.24.43.65.7( )

A.2.3B.3.3C.4.3D.5.3

解析:(方法一)4.5,3.5,2.8,5.2,4.4,3.6,5.7,2.3 ;视为4325435255824673的组合,其中,43254352=>43254352分四组,每组和为755824673=>55824673分四组,每组和为10

(方法24.5+3.5=82.8+5.2=84.4+3.6=85.7+?=8?=2.3

 

69201/41/43/161/8,()

A2/9B3/17C4/49D5/64

解析:选D

方法一:01/41/43/161/8,(5/64=>0/21/42/83/164/325/64;分子 012345 等差;分母2481632 等比

方法二:1/4=1/4 - 0×1/4 3/16=1/4 - 1/4×1/4 1/8=3/16 - 1/4×1/4 5/64=1/8 - 3/16×1/4

 

693161736111448( )

A.2472B.2245C.1863D.1679

解析:16×1+1=17 17×2+2=36 36×3+3=111 111×4+4=448 448×5+5=2245

 

694133/57119/5191/3949/21( )7/3

A.28/12B.21/14C.28/9D.31/15

解析:133/57=119/51=91/39=49/21=28/12=7/3,所以答案为A

 

695 041848100( )

A.140B.160C.180D.200

解析: 041848100180 414 30 52 80 ,作差,101622 28 ,作差

 

69611371741( )

A.89B.99C.109 D.119

解析:从第3项起,每一项=前一项×2+再前一项

 

697 22355690( )234

A.162B.156C.148D.145

解析:22355690145234;作差得1321345589,作差得8132134 => 8+13=2113+21=34

 

698 58-49( )301821

A.14B.17C.20D.26

解析:58 -49 17 30 1821 =>分四组,每组第二项减第一项=>313133

 

699 6489129( )2630

A.12B.16C.18D.22

解析:6   4   8 9   12   9 16   26   30=>分三组,每组作差=>2-4-33-10-4=>每组作差=>6-6-6

 

700 141657,(

A.165B.76C.92D.187

解析:1×3 + 1(:12)4×3 + 4(:22)16×3 + 9(:32)57×3 + 16(:42)= 187

 

701 -3-252461,(

A.125B.124C.123D.122

解析:-3=03-3-2=13-35=23-324=33-361=43-3122=53-3

 

70220/94/37/94/91/4,(

A5/36B1/6C1/9D1/144

解析:选A20/9=20/94/3=24/187/9=28/364/9=32/721/4=36/1445/36=40/288;其中,分子202428323640等差;分母9183672144288等比

 

7032389432,()

A.3B.239C.259D.269  

解析:2238943中十位数284的最大公约数;3238946中个位数393的最大公约数,所以选A

 

70412/35/9( )7/154/9

A.1/2B.3/4C.2/13D.3/7

解析:1,2/3,5/9,1/2,7/15,4/9=>3/34/65/96/127/158/18=>分子345678等差,分母369121518等差

 

7054223615( )

A.16B.30C.45D.50

解析:每一项与前一项之商=>1/213/225/23等差

 

706 7940741526,()

A2567B3547C4368D5436

解析:选D79407415265436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。所以7×7-9=40 , 9×9-7=74 , 40×40-74=1526 , 74×74-40=5436

 

707 272863( )215

A64B79C125D126

解析:选D2=13+17=23-1 28=33+1 63=43-1所以()=53+1=126 215=63-1

 

708 34716( )124

A43B54C81D121

解析:选A两项相减=>1392781等比

 

7091091750,()

A.69B.110C.154D.199

解析:9=10×1-117=9×2-150=17×3-1199=50×4-1

 

710 12359( )715

A.12B.34C.214D.37

解析:从第二项起作变化23,59,37,715=>(2,3)(5,9)(3,7)(7,15)=>      2×2-第一项=35×2-第一项=93×2+第一项=77×2+第一项=15

 

711 -70129( )

A.12B.18C.24D.28

解析:-23+1=7-13+1=013+1=223+1=933+1=28

 

71212828( )

A.72B.100C.64D.56

解析:1×2+2×3=82×2+8×3=288×2+28×3=100

 

713311132931( )

A.52B.53C.54D.55

解析:11=32+213=42-329=52+431=62-555=72+6

 

714 1443-2( )

A.-3B.4C.-4D.-8

解析:2除以3用余数表示的话,可以这样表示商为-1且余数为1,同理,-4除以3用余数表示为商为-2且余数为22、因此14,4,3,-2,(-4),每一项都除以3,余数为21012=>C

ps:余数一定是大于0的,但商可以小于0,因此,-2除以3的余数不能为-2,这与2除以3的余数是2是不一样的,同时,根据余数小于除数的原理,-2除以3的余数只能为1

 

715-10129,()

A11B121C81D730

解析:选D(-1)3+1=003+1=113+1=223+1=993+1=730

 

716 282464,()

A120B140C150D160

解析:选D1×2=22×4=83×8=244×16=64 5×32=160

 

7174223615( )

A.16B.30C.45D.50

解析:每一项与前一项之商=>1/213/225/23等差

 

718  013821,()

A25B55C57D64

解析:选B第二个数乘以3减去第一个数得下个数

 

719 8122460

A64B125C168D169

解析:选C12-8=424-12=1260-24=36,()-60=?差可以排为41236,?可以看出这是等比数列,所以?=108所以()=168

 

720541149329( )

A386B476C581D645

解析:选C0×0+5=5 6×6+5=4112×12+5=14918×18+5=32924×24+5=581

 

721  2334558( )

A49B59C64D612

解析:选D把数列中的各数的十位和个位拆分开=>可以分解成3456235812 的组合。3456 一级等差,235812   二级等差

 

   722220799,()

A.13B.12C.18D.17

解析:2+2+0=4 2+0+7=9 0+7+9=167+9+9=259+9+?=36 ?=18

 

723325/33/2( )

A.7/5B.5/6C.3/5D.3/4

解析:(方法一)3/12/15/33/27/5=>分子减分母=>21212 =>答案A(方法二)原数列325/33/2 可以变为3/14/25/36/4,分子上是3456,分母上是1234,均够成自然数数列,由此可知下一数为7/5

 

7249588716150,()

A.40 B.39C.38D.37

解析:95 - 9 - 5 = 81 88 - 8 - 8 = 72 71 - 7 - 1 = 6361 - 6 - 1 = 54 50 - 5 - 0 = 45 40 - 4 - 0 = 36 所以选 A40

 

7253298340,()

A.1B.57 C.3 D.5219

解析:思路:这类题每两数字项之间的差值相差很大,而且又没有什么联系,答案的数字相差也很大,杂看是很乱没什么规律。这时我们不防抛去传统的思路,就从每个数字项直接下手,考虑怎么把这数列转成新的数列(注:个人认为考虑如何成为新的数列应该以每一项数字的本意去推,如:只有一位数字的数字项2,我们不能推为0-20×2,因为这样推出答案不具备唯一性,往往会让你陷入误区。),再找出彼此之间的规律!32=>2-3=-1(即后一数减前一个数),98=>8-9=-1,34=>4-3=1,0=>0(因为0这一项本身只有一个数字,故还是推为0),?=>?得新数列:-1,-1,1,0,?;再两两相加再得出一个新数列:-2,0,1.?2×0-2=-22×1-2=02×2-3=12×3-3=3

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值