PPO算法基础(一)

PPO近端策略优化算法

  我们今天还是主要来理解PPO算法的数学原理。PPO是一种策略梯度方法,简单的策略梯度对每个样本(或者一组样本)进行一次梯度更新,对单个样本执行多个梯度步骤会导致一些问题,因为梯度偏差太大,从而产生错误的策略。PPO允许我们在每个样本中进行多次梯度更新,方法是尽量使策略与用于采样的策略保持一致(PG算法本身都是要on-policy,PPO可以on也可以off),如果更新后的策略与用于采样数据的策略不接近,则通过削减梯度流来实现。

  PPO损失的更新方式是求解这个式子,也就是最大化我们的目标函数

在这里插入图片描述

  我们需要用优势函数来化简这个式子

在这里插入图片描述

  可以发现我们的目标函数就可以等于下面的式子

在这里插入图片描述

  我们定义一个权重系数d

在这里插入图片描述

  再化简一下,将优化问题转换为求解分布问题

在这里插入图片描述

  再化简一下,将优化问题转换为求解分布问题

在这里插入图片描述

  通过重要性采样,将式子转换一下

在这里插入图片描述

  上面的那个ratio非常重要,定义

在这里插入图片描述

  通过clip裁剪限制策略π和π-old的差异

在这里插入图片描述

  除了策略损失,还有值函数损失,我们也通过裁剪值函数进行更新 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/30a58b034beb4cf2a746a75b6b4cc196.png) 得到的损失函数为

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白云千载尽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值