问题描述:
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
返回 true 。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1
/ \
2 2
/ \
3 3
/ \
4 4
返回 false 。
解决方案:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int depth(TreeNode* root) {
if (root==NULL) return 0;
int left = depth(root->left); //计算左子树的深度
int right = depth(root->right); //计算右子树的深度
return max(left, right) + 1; //返回较大值
}
bool isBalanced(TreeNode* root) {
if (root == NULL) return true; //空树是平衡二叉树
if (abs(depth(root->left) - depth(root->right)) > 1) return false; //左右子树高度差大于1,不是平衡二叉树
else return isBalanced(root->left) && isBalanced(root->right); // 递归判断左右子树是否为平衡二叉树
}
};
总结:使用了递归的方法,编写的代码量比较少,但是需要仔细的理解与思考。效率较低,消耗内存较大。