路网密度计算

计算原理:

路网密度=单位网格内路网的长度/单位网格面积

已有数据:

1.内蒙古分县区行政边界矢量数据

2.内蒙古路网分布数据

在ARCGIS实现过程:

1.利用【数据管理——投影与转换工具——矢量——投影】给只有地理坐标系的两个图层定义投影,注意:地理坐标系转换为投影坐标系用【投影】工具,而不是【定义投影】工具,投影类型为WGS1984 UTM-49N。

2.创建渔网:【数据管理——sampling——create fishnet】,定义分辨率为0.099°(0.1°)。

3.按照内蒙古行政边界裁剪:【Analysis——clip】,得到:

4.将路网按渔网进行分割:【Analysis Tools——Overlay——Identity】

5.按照fish的id进行字段合并:【geoprocessing——dissolve】

 

6.将空间属性连接到渔网上 :【Analysis——Overlay——Spatial Join】

 目标要素:创建的渔网

连接要素:路网折线要素

field map:对于属性length右击选择连接规则为sum

最后连接规则选择为Intersect

7.给渔网定义空间投影为WGS UTM 49N,计算每个渔网网格的面积,然后用每个网格的length/area得到路网密度

转为栅格:

### 如何使用Python实现路网密度计算 为了计算路网密度,通常需要两个主要输入:道路网络的空间分布数据和研究区域的面积。空间分布数据可以是包含路段起点和终点坐标的地理信息系统(GIS)文件或表格形式的数据。 #### 数据准备 假设有一个CSV文件`roads.csv`,其中包含了每条道路的起始点坐标(经纬度)。可以通过Pandas加载此数据并进行初步处理[^1]: ```python import pandas as pd # 加载道路数据 data = pd.read_csv('roads.csv') print(data.head()) ``` #### 计算总长度 对于每一条记录,可以根据其几何形状(线段)来估算实际距离。这里采用Haversine公式来近似地球表面上两点之间的最短距离(大圆弧),适用于大多数城市级别的应用。 定义一个函数用于计算两组经纬度间的直线距离: ```python from math import radians, sin, cos, sqrt, atan2 def haversine(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth. Parameters: lon1 (float): Longitude of point A lat1 (float): Latitude of point A lon2 (float): Longitude of point B lat2 (float): Latitude of point B Returns: float: Distance in kilometers """ # Convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * atan2(sqrt(a), sqrt(1-a)) r = 6371 # Radius of Earth in kilometers return c * r ``` 接着遍历整个DataFrame中的每一行,累加各路段的距离得到总的路网长度: ```python total_length_km = sum(haversine(row['start_lon'], row['start_lat'], row['end_lon'], row['end_lat']) for idx, row in data.iterrows()) print(f'Total road network length is {total_length_km:.2f} km.') ``` #### 获取研究区面积 获取特定区域内总面积的方法取决于所使用的地图服务提供商API或是已有的矢量边界文件。此处简化为直接指定一个固定数值作为示例: ```python study_area_sqkm = 50 # 假设的研究区域大小,单位平方千米 ``` #### 计算路网密度 最后一步就是简单地除法运算得出最终结果: ```python road_density = total_length_km / study_area_sqkm print(f'Road density within this area is approximately {road_density:.2f} km/km².') ``` 通过上述过程就可以完成基本的路网密度分析任务。当然,在更复杂的应用场景下还需要考虑更多因素如不同类型的道路权重分配等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值