CMIP6数据统计降尺度思路与流程操作

1. 首先将所有数据裁剪到[28,62]N,[78,132]E:(sde_prepro.py)

gfdl = xr.open_dataset(r"F:\SD\All models\snd_LImon_BCC-CSM2-MR_ssp585_r1i1p1f1_gn_201501-210012.nc")
gfdl_sde = gfdl.snd
gfdl_sde = gfdl_sde.sel(lon=slice(78,132),lat=slice(28,62))
gfdl_sde.to_netcdf(r"D:\Data2022\ERA5\LICL\data_processed\snd_BCC-CSM2-MR_ssp585_menggugaoyuan_201501-210012.nc")

2. 历史数据(historical)时间范围裁剪到1981-2014年---->用来做偏差校正:

gfdl_sde = gfdl_sde.sel(time=slice("1981-01-01","2014-12-31")) 

3. 将所有模式数据重采样到0.1°:(通过linux系统的python cdo完成)

# 生成网格
!cdo griddes era5_sde_menggugaoyuan.nc > grid
# 查看网格
!cdo griddes snd_BCC-CSM2-MR_ssp126_menggugaoyuan_201501-210012.nc
#重采样网格从0.25 到0.05(cmip数据到era5数据)
!cdo remapbil,grid  snd_NorESM2-MM_historical_menggugaoyuan_1981_2014.nc  snd_NorESM2-MM_historical_menggugaoyuan_1981_2014_resample.nc
# 批量重采样
!for ifile in `ls snd_LImon_NorESM2-MM_*.nc`;do cdo remapbil,grid $ifile resample_$ifile; done

4. 进行偏差校正降尺度:

# 计算多年月平均降水
# obs_sde_monthlymean = obs_sde.resample(time="1M").mean()
# bcc_sde_monthlymean = bcc_sde.resample(time="1M").mean()
obs_sde_multimonthlymean = obs_sde.groupby(obs_sde.time.dt.month).mean()
bcc_sde_multimonthlymean = bcc_sde.groupby(bcc_sde.time.dt.month).mean()

# 计算偏差
delta_sde &#
Use of NWAI-WG data   So far, NWAI-WG data have been used on a collaborative basis in publications (see the attached file). The major reasons are the data were not widely distributed. They were only used in our group and our collaborative networks. There were some cases with requests of the data made after people read Liu and Zou's (2012) paper. You have two options for using the data. Option 1: Collaboration with us. In this case, we will help you to describe the downscaling method and contribute to other parts of the paper such as comments/suggestions on the papers, if the fields are within our expertise. Option 2: Use of the data on your own. While option 1 for collaboration with us is welcome, option 2 is also highly encouraged, particularly, when the data are used for these research disciplines, rather than agricultural related. Thanks to Professor Yu who provides us with his group's web site (www.agrivy.com) as a media for distribution of the data.   Acknowledgment for option 1  “We acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP5 multi-model dataset. Support of this dataset is provided by the Office of Science, US Department of Energy. Dr. Ian Macadam of the University of New South Wales downloaded the raw GCM monthly data. ”   Acknowledgment for option 2  “We acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP5 multi-model dataset. Support of this dataset is provided by the Office of Science, US Department of Energy. Dr. Ian Macadam of the University of New South Wales downloaded the raw GCM monthly data. Dr. De Li Liu of the NSW Department of Primary Industries used NWAI-WG to downscale downscaled daily data. Also, thanks to AGRIVY (www.agrivy.com) provides us the data for this study.”
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值